Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
Vol 10, No 1: March 2022

Smart DIPSS for Dynamic Stability Enchancement on Multi-Machine Power System

Herlambang Setiadi (Universitas Airlangga)
Fakhruddin Arrazi (PT PG Rajawali II)
Muhammad Abdillah (Universitas Pertamina)
Awan Uji Krismanto (Institut Teknologi Nasional)



Article Info

Publish Date
08 Mar 2022

Abstract

Disruption of the electric power system always results in instability. These disturbances can be in the form of network breaks (transients) or load changes (dynamic). Changes in load that occur suddenly and periodically cannot be responded well by the generator so that it can affect the dynamic stability of the system. This causes the occurrence of frequency oscillations in the generator. A poor response can cause frequency oscillations for a long period. This will result in a reduction in the available power transfer power. In a multi-machine power system, all the machines work in synchrony, so the generator must operate at the same frequency. Therefore, disturbances that arise will have a direct impact on changes in electrical power. In addition, changes in electrical power will have an impact on mechanical power. The difference in response speed between a fast electrical power response and a slower mechanical power response will result in instability. As a result of these differences, the system oscillates. The addition of the excitation circuit gain is less able to stabilize the system. To solve the problem, additional signal changes are required. The additional signal is generated by the Dual Input Power System Stabilizer (DIPSS) setting using the Ant Colony Optimization (ACO) method.Disruption of the electric power system always results in instability. These disturbances can be in the form of network breaks (transients) or load changes (dynamic). Changes in load that occur suddenly and periodically cannot be responded well by the generator so that it can affect the dynamic stability of the system. This causes the occurrence of frequency oscillations in the generator. A poor response can cause frequency oscillations for a long period. This will result in a reduction in the available power transfer power. In a multi-machine power system, all the machines work in synchrony, so the generator must operate at the same frequency. Therefore, disturbances that arise will have a direct impact on changes in electrical power. In addition, changes in electrical power will have an impact on mechanical power. The difference in response speed between a fast electrical power response and a slower mechanical power response will result in instability. As a result of these differences, the system oscillates. The addition of the excitation circuit gain is less able to stabilize the system. To solve the problem, additional signal changes are required. The additional signal is generated by the Dual Input Power System Stabilizer (DIPSS) setting using the Ant Colony Optimization (ACO) method.

Copyrights © 2022






Journal Info

Abbrev

IJEEI

Publisher

Subject

Computer Science & IT Electrical & Electronics Engineering

Description

Indonesian Journal of Electrical Engineering and Informatics (IJEEI) is a peer reviewed International Journal in English published four issues per year (March, June, September and December). The aim of Indonesian Journal of Electrical Engineering and Informatics (IJEEI) is to publish high-quality ...