Nusantara Science and Technology Proceedings
2nd Bioinformatics and Biodiversity Conference

In Silico Design and Validation of CRISPR-Cas13a System as a Potential Antiviral for SARS-CoV-2 in Indonesia

Alfero Putra Iryanto (Department of Biotechnology, Esa Unggul University)
Christy (Department of Biotechnology, Esa Unggul University)
Muhammad Farrel Ewaldo (Department of Biology, Diponegoro University)
Anggia Prasetyoputri (Research Center for Biotechnology)
Ratih Asmana Ningrum (Research Organization of Life Sciences, National Agency for Research and Innovation (BRIN))
Riza Arief Putranto (Indonesian Research Institute for Biotechnology and Bioindustry)
Akhirta Atikana (Research Organization of Life Sciences, National Agency for Research and Innovation (BRIN))



Article Info

Publish Date
30 Mar 2022

Abstract

The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a worldwide pandemic of coronavirus disease (COVID-19). Indonesia is one of the countries with large numbers of positive cases in Asia with certain dominant variants. Currently, there are no specific therapeutic agents against SARS-CoV-2. Therefore, the development of specific and effective therapeutic tools is urgently needed to overcome the pandemic. This study designed a CRISPR-Cas13a system strategy as a potential anti-SARS-CoV-2. We utilized comprehensive bioinformatics methods to identify a unique segment in the SARS-CoV-2 consensus sequence from Indonesia that is different from the related segment in the SARS-CoV. This unique segment was used as a specific target for SARS-CoV-2 Spike Protein to design a set of crRNA libraries. Off-target analysis and molecular docking simulation were performed to validate the specificity and to analyze interactions among the crRNA candidates, target RNA, and Cas13a. Our study identified a 17 amino acid unique segment on the Receptor Binding Domain (RBD) region. By using that unique segment, a total of 12 crRNA candidates were selected based on their GC content. Finally, based on the off-target and molecular docking validation, four crRNAs were selected as potential candidates for CRISPR-Cas13a-based antivirals. Although further validation with in vitro assays is important, the present study provides a comprehensive demonstration regarding the potential of CRISPR-Cas13a as a strategy for SARS-CoV-2 antiviral development. Considering the specific property of the CRISPR system, the present methodology can also be utilized to develop novel antiviral candidates for other RNA viruses.

Copyrights © 0000






Journal Info

Abbrev

nuscientech

Publisher

Subject

Agriculture, Biological Sciences & Forestry Chemical Engineering, Chemistry & Bioengineering Economics, Econometrics & Finance Engineering Law, Crime, Criminology & Criminal Justice Materials Science & Nanotechnology Medicine & Pharmacology

Description

NST Proceeding supports regional research communities to globalise their findings in Science and Technology by providing an open access, online platform in line with international publishing standards and indexing scholarly conference proceedings. The current emphasis of the NST Proceeding includes ...