ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika
Vol 10, No 2 (2022): ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektr

Deep Learning untuk Klasifikasi Glaukoma dengan menggunakan Arsitektur EfficientNet

WAHYUNI RIZKY PERDANI (Fakultas Teknik Elektro - Universitas Telkom)
RITA MAGDALENA (Fakultas Teknik Elektro - Universitas Telkom)
NOR KUMALASARI CAECAR PRATIWI (Fakultas Teknik Elektro - Universitas Telkom)



Article Info

Publish Date
12 Apr 2022

Abstract

ABSTRAKGlaukoma merupakan kerusakan yang terjadi pada saraf mata yang disebabkan oleh meningkatnya tekanan di bola mata. Glaukoma dapat menyebabkan penderitanya mengalami kebutaan permanen. Data dari WHO, jumlah orang yang diperkirakan menjadi buta akibat glaukoma primer adalah 4,5 juta. Penilaian klasifikasi tingkatan glaukoma oleh ophthalmologist menggunakan nilai CDR (Cup to Disc Ratio). Maka dari itu, dibuat sistem yang dapat digunakan dalam mengklasifikasikan glaukoma melalui citra fundus mata dengan menggunakan metode CNN (Convolutional Neural Network) dengan arsitektur EfficientNet. Klasifikasi glaukoma dibagi menjadi 5 kelas, yaitu deep, early, moderate, OHT dan normal. Citra mata yang digunakan didapatkan dari dataset RimOne r1. Penelitian ini mencari sistem dengan performansi terbaik. Model yang mendapatkan parameter performansi terbaik adalah citra dengan hyperparameter optimizer Adamax, learning rate 0,001, epoch 20, dan batch size 32. Akurasi, presisi, recall, dan F1-Score masing-masing mencapai 1,0000.Kata kunci: Glaukoma, Convolutional Neural Network (CNN), EfficientNet ABSTRACTGlaucoma is the optic nerve damage caused by increasing pressure on the eyeball. Glaucoma can cause patients to encounter permanent blindness. According to WHO data, the number of people estimated to be blind from primary glaucoma is 4,5 million. Evaluation of glaucoma grade classification by ophthalmologist uses CDR (Cup to Disc Ratio) value. Therefore, a system has been created that can be used to classify glaucoma through eye fundus images using the CNN (Convolutional Neural Network) method with EfficientNet architecture. Glaucoma is classified into 5 classes, namely deep, early, moderate, OHT and normal. The used eye image is obtained from the RimOne r1 dataset. This research is looking for a system with the best performance. The model that got the best performance parameters with the hyperparameter optimizer Adamax, learning rate 0,001, epoch 20, and batch size 32. Accuracy, precision, recall, and F1-Score each reached 1,0000. Keywords: Glaucoma, Convolutional Neural Network (CNN), EfficientNet

Copyrights © 2022






Journal Info

Abbrev

elkomika

Publisher

Subject

Electrical & Electronics Engineering Engineering

Description

Jurnal ELKOMIKA diterbitkan 3 (tiga) kali dalam satu tahun pada bulan Januari, Mei dan September. Jurnal ini berisi tulisan yang diangkat dari hasil penelitian dan kajian analisis di bidang ilmu pengetahuan dan teknologi, khususnya pada Teknik Energi Elektrik, Teknik Telekomunikasi, dan Teknik ...