Algoritme Jurnal Mahasiswa Teknik Informatika
Vol 1 No 2 (2021): Jurnal Algoritme

Perbandingan Tingkat Akurasi Pengenalan Kadar Semen Dan Pasir Pada Campuran Kering Berdasarkan Tingkat Resolusi Kamera Dengan Metode Pengenalan JST

Erven Tanjungan (Unknown)
Gasim Gasim (Unknown)
Sudiadi Sudiadi (Unknown)



Article Info

Publish Date
16 Apr 2021

Abstract

Pasir dan semen merupakan salah satu material terbesar atau terpenting yang digunakan dalam proses pembangunan pada suatu bangunan atau gedung dan selalu digunakan oleh masyarakat. Masing-masing campuran memiliki takaran pasir dan semennya masing-masing, namun untuk orang biasa sulit untuk membedakan jenis-jenis campuran kering pada bangunan runtuh ataupun bangunan yang belum jadi. Penelitian ini membandingkan tingkat akurasi pengenalan kadar semen dan pasir pada campuran kering berdasarkan tingkat resolusi kamera dengan metode pengenalan Jaringan Saraf Tiruan. Jenis campuran yang digunakan antara lain dengan takaran 1semen 1pasir, 1semen 1,5pasir, 1semen 2pasir, 1semen 2,5pasir, 1semen 3pasir, dan 1semen 3,5pasir. Tingkat resolusi kamera yang digunakan ada 5 antara lain 3MP, 5MP, 8MP, 10MP, 12MP, dan menggunakan jarak pemotretan ±9cm. Metode pengenalan menggunakan Jaringan Syaraf Tiruan dan ekstrasi fitur menggunakan GLCM(Gray Level Co-Occurrence Matrix) yang terdiri dari Entropy, Standard Deviation, Contrast, Angular Second Moment(ASM)/ Homogeneity, Correlation, dan Inverse Different Moment(IDM)/ Energy. Hasil perhitungan tertinggi dalam pengenalan jenis campuran kering berdasarkan tingkat resolusi kamera ialah pada resolusi kamera 12MP dengan jumlah pengenalan sebanyak 105 dari 120 data uji, sehingga menghasilkan tingkat akurasi sebesar 87,5%.

Copyrights © 2021






Journal Info

Abbrev

algoritme

Publisher

Subject

Computer Science & IT

Description

Jurnal Algoritme menjadi sarana publikasi artikel hasil temuan Penelitian orisinal atau artikel analisis. Bahasa yang digunakan jurnal adalah bahasa Inggris atau bahasa Indonesia. Ruang lingkup tulisan harus relevan dengan disiplin ilmu seperti: - Machine Learning - Computer Vision, - Artificial ...