Glaucoma is an eye disease that causes damage to the optic nerve due to increased pressure in the eyeball. Delay in diagnosis and treatment of optic nerve damage due to glaucoma can lead to permanent blindness. Thus, several studies have developed a glaucoma early detection system based on digital image processing and machine learning. This study carried out glaucoma classification based on fundus image processing using Convolutional Neural Network (CNN). The CNN architecture proposed in this study consists of three convolutional layers with output channels 8, 16, 32 sequentially and a filter size of 5×5 at each layer, followed by a pooling layer and a dropout layer at the feature extraction stage. Furthermore, a fully connected layer and softmax activation function was implemented at the classification stage to classify fundus images into normal conditions, early glaucoma, moderate glaucoma, deep glaucoma, and ocular hypertension (OHT). The total amount of fundus image data used in this study consisted of 2000 fundus images divided into 1280 training data, 320 validation data, and 400 test data. 5-fold cross-validation is implemented in the training phase to select the best model. At the testing stage, the best accuracy generated by 99%, with the precision value, recall, f-1 scores and the AUC score are close to 1. According to the system performance results obtained, the proposed model can be used as a tool for medical personnel in classifying glaucoma conditions to provide appropriate medical treatment and reduce the risk of permanent blindness due to glaucoma.
Copyrights © 2022