Bandung Conference Series: Statistics
Vol. 3 No. 2 (2023): Bandung Conference Series: Statistics

Penerapan Regresi Nonparametrik Smooting Spline untuk Data Tersensor dalam Memodelkan Hubungan Antara Lamanya Waktu Kesembuhan Rawat Inap Pada Pasien Diabetes Melitus Tipe-2 dengan Usia Pasien

Dea Sri Mulyani (-)
Abdul Kudus (Unknown)



Article Info

Publish Date
02 Aug 2023

Abstract

Abstract. The aim of study is to explain the case. Regression analysis is used to model or look for patterns of relationship between one or more independent variables and one or more response variables. Since the data often does not follow a specific formulation pattern, a more flevible model is required, namely nonparametric regression model approach is an approachused when the shape of the shape of the relationship between the response variable and the independent variable is unknown or information about the shape of the regression function is not available. The nonparametric spline regression model with optimal noodes was applied to patient age and time to recovery after hospitalization in patients with type 2 diabetes mellitus containing right-censored data in a variable containing the right sensor. In this study, the generalized cross-validation (GCV) method was applied to nonparametric smoothing spline regression to determine the optimal smoothing parameter. In order to obtain the GCV value, parameter estimasi must be available to form a hat matriz formed form . Parameter estimation for the smoothing spline from the function f(.) by minimized PRSS (Penalized Residual Sum of Square). Once the optimal GCV value has been determined, it froms the best estimate of the regression function. Optimal Smoothing parameter by choosing with a minimum GCV value. According to the research result, the minimum GCV value is 0.0378 at and the GCV value with Kaplan Meier weights is 30.4773. Abstrak. Penelitian ini bertujuan untuk menjelaskan mengenai kasus Analisis regresi digunakan untuk memodelkan atau mencari pola hubungan antara satu atau lebih variabel bebas dengan satu atau lebih variabel respons. Seringkali data tidak mengikuti pola rumusan tertentu, sehingga diperlukan model yang lebih fleksibel, yaitu regresi nonparametrik. Pendekatan model regresi nonparametrik yaitu merupakan suatu pendekatan yang digunakan apabila bentuk hubungan antara variabel respon dan variabel bebasnya tidak diketahui atau tidak adanya informasi mengenai bentuk fungsi regresinya. Model regresi nonparametrik spline dengan titik knot optimal diaplikasikan pada usia pasien terhadap lamanya waktu kesembuhan rawat inap pada pasien yang menyandang penyakit diabetes melitus tipe-2 yang di dalamnya mengandung data tersensor kanan menjadi variabel yang berisi sensor kanan. Dalam penelitian ini diterapkannya metode GCV (Generalized Cross-Validation) pada regresi nonparametrik smoothing spline untuk menentukan parameter smoothing yang optimal. Untuk mendapatkan nilai GCV, Maka perlu adanya nilai estimasi parameter untuk membentuk hat matrix yang dibentuk dari . Estimasi parameter untuk smoothing spline dari fungsi f(.) dengan meminimumkan PRSS (Penalized Residual Sum of Square). Ketika nilai GCV yang optimal sudah didapatkan maka akan membentuk estimasi fungsi regresi yang terbaik. Parameter penghalus optimal dengan cara memilih yang memiliki nilai GCV minimum. Dari hasil penelitian, nilai GCV paling minimum bernilai 0.0378 pada saat dan untuk nilai GCV dengan pembobot Kaplan-Meier bernilai 30.4773.

Copyrights © 2023






Journal Info

Abbrev

BCSS

Publisher

Subject

Decision Sciences, Operations Research & Management Education Mathematics

Description

Bandung Conference Series: Statistics (BCSS) menerbitkan artikel penelitian akademik tentang kajian teoritis dan terapan serta berfokus pada Statistika dengan ruang lingkup sebagai berikut: Alternating Least Square, Analisis Konjoin, Autoregressive, Auxiliary Variabel, Baby Birth, Block Maxima, ...