Bulletin of Chemical Reaction Engineering & Catalysis
2016: BCREC Volume 11 Issue 2 Year 2016 (August 2016)

Characterization of Ag-promoted Ni/SiO2 Catalysts for Syngas Production via Carbon Dioxide (CO2) Dry Reforming of Glycerol

Norazimah Harun (Faculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, 26300 Gambang, Pahang)
Jolius Gimbun (Faculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, 26300 Gambang, Pahang||Malaysia Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang)
Mohammad Tazli Azizan (Department of Chemical Engineering, Faculty of Engineering, Universiti Teknologi PETRONAS, 32610 Bandar Seri Iskandar, Perak Darul Ridzuan)
Sumaiya Zainal Abidin (Faculty of Chemical Engineering & Natural Resources, Universiti Malaysia Pahang, 26300 Gambang, Pahang||Malaysia Centre of Excellence for Advanced Research in Fluid Flow (CARIFF), Universiti Malaysia Pahang, 26300 Gambang, Pahang)



Article Info

Publish Date
20 Aug 2016

Abstract

The carbon dioxide (CO2) dry reforming of glycerol for syngas production is one of the promising ways to benefit the oversupply crisis of glycerol worldwide. It is an attractive process as it converts carbon dioxide, a greenhouse gas into a synthesis gas and simultaneously removed from the carbon biosphere cycle. In this study, the glycerol dry reforming was carried out using Silver (Ag) promoted Nickel (Ni) based catalysts supported on silicon oxide (SiO2) i.e. Ag-Ni/SiO2. The catalysts were prepared through wet impregnation method and characterized by using Brunauer-Emmett-Teller (BET) surface area, Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and Thermo Gravimetric (TGA) analysis. The experiment was conducted in a tubular reactor which condition fixed at 973 K and CO2:glycerol molar ratio of 1, under atmospheric pressure. It was found that the main gaseous products are H₂, CO and CH4 with H₂:CO molar ratio < 1.0. From the reaction study, Ag(5)-Ni/SiO2 results in highest glycerol conversion and hydrogen yield, accounted for 32.6% and 27.4%, respectively. 

Copyrights © 2016






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction ...