cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota surabaya,
Jawa timur
INDONESIA
Civil Engineering Dimension
ISSN : 14109530     EISSN : 1979570X     DOI : -
Core Subject : Engineering,
The Civil Engineering Dimension (Dimensi Teknik Sipil) is a refereed journal, published twice a year, in March and September.
Arjuna Subject : -
Articles 8 Documents
Search results for , issue "Vol. 13 No. 1 (2011): MARCH 2011" : 8 Documents clear
CPT-Based Interpretation of Pile Load Tests in Clay-Silt Soil Prakoso W.A.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (373.195 KB) | DOI: 10.9744/ced.13.1.6-14

Abstract

Two pile axial load tests were performed in a site in Depok, West Java. The soil of the site is predominantly a silt-clay soil, characterized by seven mechanical cone penetration tests (CPTs). The piles were 5.5 m long and 11.5 m long, 250 mm square piles. The results of the static load tests showed that the ultimate capacities were achieved. The axial load tests were subsequently back-analyzed using an axisymmetric finite element model using PLAXIS. In the back-analyses, the soil modulus and shear strength in the model, using the cone penetration resistance as the reference, were adjusted so that the numerical load-settlement curves matched the actual curves. The results of the back-analyses are then synthesized with the results of the CPTs, and are compared with available design guidelines. Some recommendations are then proposed.
Shear Response of Fibrous High Strength Concrete Beams without Web Reinforcement Sudheer Reddy, L.; Ramana Rao, N.V.; Gunneswara Rao, T.D.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (299.479 KB) | DOI: 10.9744/ced.13.1.50-58

Abstract

The use of steel fibers to improve the mechanical properties of concrete has been the ongoing interest in the research work. This paper deals with one such improvement in the mechanical property of concrete, which is the shear strength. In this paper an attempt has been made to study the improvement of shear strength of high strength concrete beams (70 MPa) with different shear span to depth ratios (a/d = 1, 2, 3, and 4) and various dosages of fibers (0.4%, 0.8%, and 1.2% by volume of concrete), without shear reinforcement. The experimental work revealed that steel fiber volume has different influence at different shear span to depth ratios (a/d). The test results indicated an increase in the cracking shear resistance noticeably and ultimate shear strength moderately.
Estimating the Distribution of Air Voids in Concrete Beasman L.E.; McCuen R.H.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (140.231 KB) | DOI: 10.9744/ced.13.1.15-20

Abstract

Chord length measurements are used to estimate the volumetric distribution of air voids within hardened concrete samples. The accuracy of the Linear-Traverse method is questionable because chord lengths do not directly represent the actual volumes of the air voids. Using computer simulation, randomly generated concrete samples were analyzed using the Linear-Traverse method to compute the distribution of air voids, the chord length gradation curve, the chord length-to-traverse ratio, and the air void volume gradation curve. The current chord-length approach significantly underestimated the air void content. A method that estimates that air void gradation curve from the chord length gradation curve is presented. The computer simulation results are supported by a conceptual analysis. To obtain the most accurate estimate of the air void content, computer analyses showed that at least 15 traverse lines should be regularly spaced on the concrete sample.
Analysis of Journey to Work Travel Behavior by Car and Bus in the Sydney Metropolitan Region Suthanaya P.A.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (491.61 KB) | DOI: 10.9744/ced.13.1.21-28

Abstract

Car dependence is a fundamental problem in the sustainability of cities with low-density suburban sprawl. Increasing the use of public transport is one of the policy objectives commonly adopted to overcome this problem. It is essential to study journey to work travel behavior by car and bus. This paper applied preference function to analyze travel behavior and Moran’s I spatial statistic to evaluate the spatial association. The results indicated that the commuting preferences of residents have moved towards distance maximization. In general, bus was preferred for shorter distance trips whilst car was preferred for longer distance trips. Unlike car, by increasing distances from the Central Business District, residents tended to use bus for shorter distance trip. A significant positive spatial association was identified for both the slope preferences by car and bus where zones with a preference towards longer or shorter trips tended to travel to zones with similar preferences.
Numerical Simulation of Threat-Independent Progressive Collapse Elvira E.; Mendis P.; Whittaker A.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (288.175 KB) | DOI: 10.9744/ced.13.1.29-36

Abstract

A threat-independent approach is usually utilized for progressive collapse analysis of buildings. This approach is referenced in the current guidelines such as “Progressive Collapse Analysis and Design Guidelines for New Federal Office Buildings and Major Modernization Projects” by the U.S. General Service Administration and “Design of Buildings to Resist Progressive Collapse” by the U.S. Department of Defence. However, more studies are required to accurately observe the influence of structural parameters to the response of structures in progressive collapse phenomenon. A parametric study was conducted using advanced nonlinear finite element analysis to assess the utility of the procedures in these documents. The results of the numerical simulations show that a variation of the beam dimensions moderately affects the dynamic load factor. The load factor increases as the beam dimensions increase. Other parameters such as the column dimensions, number of storeys and span lengths, have only negligible effects on the value of the dynamic load factor.
Seismic Properties of Moment-resisting Timber Joints with a Combination of Bolts and Nails Awaludin A.; Hayashikawa T.; Oikawa A.; Hirai T.; Sasaki Y.; Leijten A.J.M.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (187.152 KB) | DOI: 10.9744/ced.13.1.1-5

Abstract

Improvement of cyclic or dynamic performance of timber connections has been intensively conducted since the overall response of wooden structures is merely a function of joint performance. For a bolted joint, filling the lead-hole clearance with epoxy resin or gluing high embedding-strength materials at the interface of the individual timber member are probably the most common methods. This study presents cyclic test results of moment-resisting joints with a combination of bolts and nails. The nails were placed closer to the joint centroid than the bolts, acting as additional fasteners and were expected to improve the seismic performance of the joints. Static-cyclic test results confirmed the increase of joint stiffness and moment resistance due to the additional nails. The nails contribute to the increase of hysteretic damping significantly though pinching behavior or narrowing the hysteresis loops close to zero rotation points was still observed. The results indicated that contribution of nails or bolts on moment resistance and hysteretic damping can be superimposed.
Kriging-Based Timoshenko Beam Element for Static and Free Vibration Analyses Wong F.T.; Syamsoeyadi H.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (249.783 KB) | DOI: 10.9744/ced.13.1.42-49

Abstract

An enhancement of the finite element method using Kriging interpolation (K-FEM) has been recently proposed and applied to solve one- and two- dimensional linear elasticity problems. The key advantage of this innovative method is that the polynomial refinement can be performed without adding nodes or changing the element connectivity. This paper presents the development of the K-FEM for static and free vibration analyses of Timoshenko beams. The transverse displacement and the rotation of the beam are independently approximated using Kriging interpolation. For each element, the interpolation function is constructed from a set of nodes within a prescribed domain of influence comprising the element and its several layers of neighbouring elements. In an attempt to eliminate the shear locking, the selective-reduced integration technique is utilized. The developed beam element is tested to several static and free vibration problems. The results demonstrate the excellent performance of the developed element.
Boundary Conditions for 2D Boussinesq-type Wave-Current Interaction Equations Mera M.
Civil Engineering Dimension Vol. 13 No. 1 (2011): MARCH 2011
Publisher : Institute of Research and Community Outreach - Petra Christian University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1583.96 KB) | DOI: 10.9744/ced.13.1.37-41

Abstract

This research focuses on the development of a set of two-dimensional boundary conditions for specific governing equations. The governing equations are existing Boussinesqtype equations which is capable of simulating wave-current interaction. The present boundary conditions consist of for waves only case and for currents only case. To simulate wave-current interaction, the two kinds of the present boundary conditions are then combined. A numerical model based on both the existing governing equations and the present boundary conditions is applied to simulation of currents only and of wave-current interaction propagating over a basin with a submerged shoal. The results of the numerical model show that the present boundary conditions go well with the existing Boussinesq-type wave-current interaction equations.

Page 1 of 1 | Total Record : 8


Filter by Year

2011 2011


Filter By Issues
All Issue Vol. 24 No. 1 (2022): MARCH 2022 Vol. 23 No. 2 (2021): SEPTEMBER 2021 Vol. 23 No. 1 (2021): MARCH 2021 Vol. 22 No. 2 (2020): SEPTEMBER 2020 Vol. 22 No. 1 (2020): MARCH 2020 Vol. 21 No. 2 (2019): SEPTEMBER 2019 Vol. 21 No. 1 (2019): MARCH 2019 Vol. 20 No. 2 (2018): SEPTEMBER 2018 Vol. 20 No. 1 (2018): MARCH 2018 Vol. 19 No. 2 (2017): SEPTEMBER 2017 Vol. 19 No. 1 (2017): MARCH 2017 Vol. 18 No. 2 (2016): SEPTEMBER 2016 Vol. 18 No. 1 (2016): MARCH 2016 Vol. 17 No. 3 (2015): SPECIAL EDITION Vol. 17 No. 2 (2015): SEPTEMBER 2015 Vol. 17 No. 1 (2015): MARCH 2015 Vol. 16 No. 2 (2014): SEPTEMBER 2014 Vol. 16 No. 1 (2014): MARCH 2014 Vol. 15 No. 2 (2013): SEPTEMBER 2013 Vol. 15 No. 1 (2013): MARCH 2013 Vol. 14 No. 3 (2012): Special Edition Vol. 14 No. 2 (2012): SEPTEMBER 2012 Vol. 14 No. 1 (2012): MARCH 2012 Vol. 13 No. 2 (2011): SEPTEMBER 2011 Vol. 13 No. 1 (2011): MARCH 2011 Vol. 12 No. 2 (2010): SEPTEMBER 2010 Vol. 12 No. 1 (2010): MARCH 2010 Vol. 11 No. 2 (2009): SEPTEMBER 2009 Vol. 11 No. 1 (2009): MARCH 2009 Vol. 10 No. 2 (2008): SEPTEMBER 2008 Vol. 10 No. 1 (2008): MARCH 2008 Vol. 9 No. 2 (2007): SEPTEMBER 2007 Vol. 9 No. 1 (2007): MARCH 2007 Vol. 8 No. 2 (2006): SEPTEMBER 2006 Vol. 8 No. 1 (2006): MARCH 2006 Vol. 7 No. 2 (2005): SEPTEMBER 2005 Vol. 7 No. 1 (2005): MARCH 2005 Vol. 6 No. 2 (2004): SEPTEMBER 2004 Vol. 6 No. 1 (2004): MARCH 2004 Vol. 5 No. 2 (2003): SEPTEMBER 2003 Vol. 5 No. 1 (2003): MARCH 2003 Vol. 4 No. 2 (2002): SEPTEMBER 2002 Vol. 4 No. 1 (2002): MARCH 2002 Vol. 3 No. 2 (2001): SEPTEMBER 2001 Vol. 3 No. 1 (2001): MARCH 2001 Vol. 2 No. 2 (2000): SEPTEMBER 2000 Vol. 2 No. 1 (2000): MARCH 2000 Vol. 1 No. 2 (1999): SEPTEMBER 1999 Vol. 1 No. 1 (1999): MARCH 1999 More Issue