Articles
300 Documents
PENDEKATAN VALUE BILANGAN TRAPEZOIDAL FUZZY DALAM METODE MAGNITUDE
Aulia, Lathifatul;
Irawanto, Bambang;
Surarso, Bayu
MATEMATIKA Vol 20, No 2 (2017): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (1054.25 KB)
Defuzzification is the process to transform fuzzy numbers into real numbers (crisp). There are some defuzzification methods which can be used to confirm the fuzzy numbers. However, different defuzzification methods produce different real numbers (crisp) too. In this paper, we discuss about Magnitude method, that is an approachment method which can be used in the defuzzification of trapezoidal fuzzy numbers. The defuzzification method in the calculation considers average between the value of trapezoidal fuzzy numbers and the middle point of two defuzzifier trapezoidal fuzzy numbers
MODEL LOGISTIK DENGAN DIFUSI PADA PERTUMBUHAN SEL TUMOR EHRLICH ASCITIES
Nirwansah, Hendi;
Widowati, Widowati
MATEMATIKA Vol 10, No 3 (2007): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (73.56 KB)
This paper presents an approach of the Ehrlich ascities tumor growth modelling based on the logistic equation with diffusion. This model is constructed by using the concept of the reaction-diffusion equation. Besides that by using the principle of the travelling wave, a model equation with diffusion at tumor cell growth can be formed into the two non linear differential equation system. Then the equilibrium points of the non linear system will be obtained so that the stability of the model can be analized.
ANALISIS SISTEM NON LINEAR MELALUI PENDEKATAN SISTEM LINEAR DENGAN PARAMETER BERUBAH-UBAH
widowati, widowati
MATEMATIKA Vol 13, No 1 (2010): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (56.608 KB)
This paper proposes the relation between nonlinear systems with LPV systems (Linear Parameter Varying systems) where the non-linear systems can be described as LPV systems. Based on the LPV systems description, the nonlinearity of the systems is represented by parameters varying. Local properties of nonlinear systems are presented. It is assumed that all the conditions for the existence and uniqueness of solutions have been met. It is also assumed that the origin is a stationary point. Then, we will discuss how to analyze the stability of non-linear systems using the LPV systems approach. Furthermore, the bounds of parameters to ensure the asymptotic stability of nonlinear systems are given. To verify the proposed method, numerical simulations are demonstrated Â
MOTIVASI DEFINISI INVERS MOORE PENROSE PADA RING DENGAN ELEMEN SATUAN YANG DILENGKAPI INVOLUSI
SRRM, Titi Udjiani
MATEMATIKA Vol 19, No 1 (2016): Jurnal Matematika
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (29.755 KB)
Development on the research of the inverse matrix until the Moore Penrose inverse matrix motivate researchers to conduct the research on the Moore Penrose inverse and the inverse of element in the ring with a unit element. The used method is expanding the definition of  inverse in matrix to the ring with a unit element. Also generalizing the transpose operation of matrix to be a function of involution on the ring.
AN IMPLICIT FINITE DIFFERENCE METHOD FOR A FORCED KDV EQUATION
Wiryanto, L.H;
A, Achirul
MATEMATIKA Vol 11, No 1 (2008): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (108.048 KB)
A finite difference method is developed to solve a forced KdV equation representing a surface elevation of fluid flowing on a channel with a small bump at the bottom. We indicate some difficulties in solving the equation since it has a nonlinear and third derivative terms. We present the technique in this paper to solve the equation. As the result, the numerical scheme gives solutions performing nonlinear wave-trains of water surface generated by the forcing term. Â
ANALISIS BIFURKASI MODEL PERTUMBUHAN TUMOR DENGAN PERSAMAAN LOGISTIK WAKTU TUNDA
Dewi, Febriana;
sutimin, sutimin
MATEMATIKA Vol 14, No 1 (2011): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (11 KB)
In this paper is being studied about the logistic tumor growth model with time delay. The mathematical model is in non-linear differential equation with time delay difficult to find the solution analytically, so here we analyze the behavior of the model through perturbation. The tumor growth model has two equilibriums (i.e.at and ). Because this growth model is non-linear hence to analyze the stability of each equilibrium point is done through the linearization method. By using a perturbation procedure, the equilibrium point is unstable and is stable. The equilibrium is stable for , unstable for  and Hopf bifurcation occurs at .
OPTIMALISASI LAMA PEMANFAATAN AREA TEPI DANAU BUATAN SEBAGAI FASILITAS REKREASI DI LINGKUNGAN PERUMAHAN
Alifiani, Amalia;
Supriyadi, Bambang;
Prianto, Eddy;
Irawanto, Bambang
MATEMATIKA Vol 17, No 2 (2014): Jurnal Matematika
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (556.626 KB)
Much residential built by developers who are equipped with an artificial lake as its attractiveness. Recreation area in a residential environment promotes the maintenance of security and generally are closed. Likely users recreation area is a internal residential community and has more the long term to do recreation activities. To take advantage of the length time of community recreation activities it could take effective visit, but in fact the use of recreation area on the time of artificial lake tends to be limited due to security In this paper to determine the optimal value of long utilization of the limited time constrains of use for users from within and outside the housing. Linear Programming method to use for analysis the three approach maximal visit time from deferent time, visit time 12 our, 15 our and 24 our, obtained the higher of visitation time the longer utilization.The users most optimal to use recreation area the community from internal residential because it is influenced by environment.
KAJIAN DISKRETISASI DENGAN METODE GALERKIN SEMI DISKRET TERHADAP EFISIENSI SOLUSI MODEL RAMBATAN PANAS TANPA SUKU KONVEKSI
suhartono, Suhartono;
Zaki, Solikhin
MATEMATIKA Vol 4, No 1 (2001): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (45.926 KB)
Penelitian ini bertujuan menyelidiki efek diskretisasi dengan metode Galerkin Semi Diskret terhadap efisiensi solusi model rambatan panas tanpa suku konveksi. Indikator efisiensi yang diukur dalam penelitian ini adalah lama waktu proses komputasi dan lama waktu proses komputasi perlangkah. Sebagai pembanding digunakan metode Beda Hingga. Permasalahan yang diteliti adalah bagaimana mentranformasikan model rambatan panas tanpa suku konveksi kebentuk sistem persamaan diferensial ordiner dengan melakukan diskretisasi pada peubah ruang dengan menggunakan metode Galerkin Semi Diskret. Selanjutnya sistem persamaan diferensial biasa yang diperoleh dari diskretisasi tersebut diintegrasikan dengan menggunakan metode Runge Kutta Implisit Diagonal (RKID). Hasil pengukuran menunjukkan bahwa solusi model rambatan panas tanpa suku konveksi yang diperoleh berdasarkan diskretisasi perubah ruang menggunakan metode Galerkin Semi Diskret kurang efisien jika dibandingkan dengan solusi model rambatan panas tanpa suku konveksi yang diperoleh dengan diskretisasi perubah ruang menggunakan metode Beda Hingga. Hal tersebut dapat ditunjukkan berdasarkan lama waktu proses komputasi dan lama waktu proses komputasi perlangkah.
REDUKSI MASALAH CAUCHY ABSTRAK DEGENERATE KE MASALAH CAUCHY ABSTRAK NONDEGENERATE
Haryanto, Susilo
MATEMATIKA Vol 8, No 1 (2005): JURNAL MATEMATIKA
Publisher : MATEMATIKA
Show Abstract
|
Download Original
|
Original Source
|
Check in Google Scholar
|
Full PDF (51.811 KB)
In this article, we investigate how to reduce an abstract degenerate Cauchy problem to an abstract nondegenerate Cauchy problems. This problem is discussed in the Hilbert space which can be writen as an orthogonal direct sum of Ker M and . Under certain assumptions, abstract degenerate Cauchy problems can be reduced to abstract nondegenerate Cauchy problems which is easier to solve. If we have a solution of abstract nondegenerate Cauchy problem, then using certain transformation we can find the solution of abstract degenerate Cauchy problems. Â