cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 1,963 Documents
Performance Study of Enhanced Non-Linear PID Control Applied on Brushless DC Motor Mohamed Shamseldin; Mohamed Abdel Ghany; Abdel Ghany Mohamed
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (967.17 KB) | DOI: 10.11591/ijpeds.v9.i2.pp536-545

Abstract

This paper presents an enhanced nonlinear PID (NPID) controller to follow a preselected speed profile of brushless DC motor drive system. This objective should be achieved regardless the parameter variations, and external disturbances. The performance of enhanced NPID controller will be investigated by comparing it with linear PID control and fractional order PID (FOPID) control. These controllers are tested for both speed regulation and speed tracking. The optimal parameters values of each control technique were obtained using Genetic Algorithm (GA) based on a certain cost function. Results shows that the proposed NPID controller has better performance among other techniques (PID and FOPID controller).
Design of an Improved MPPT Control of DFIG Wind Turbine under Unbalanced Grid Voltage using a Flux Sliding Mode Observer Youssef Majdoub; Ahmed Abbou; Mohamed Akherraz; Rachid El Akhrif
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1109.543 KB) | DOI: 10.11591/ijpeds.v8.i4.pp1723-1731

Abstract

This study presents a control scheme of the electronic interface of a grid connected Variable Speed Wind Energy Generation System (VS-WEGS) based on a Doubly Fed Induction Generator (DFIG). The efficiency of the wind energy is represented to according to the control strategy applied. Thus, in the case of unbalanced grid voltage, the negative sequence voltage causes additional strong oscillation at twice the grid frequency in the stator instantaneous active and reactive powers. The objective of this work is to present an enhanced MPPT controller uses backstepping approach implemented in both  and   reference frames rotating to keep a safe operation of DFIG during unbalanced grid voltage associated with regulating rotor flux, in order to estimate rotor flux, a nonlinear observer based on sliding mode is proposed in this work. Note that the conventional controllers (PI, PI-R …) are not provided satisfactory performance during unbalanced voltage dips. The validation of results has been performed through simulation studies on a 4 kW DFIG using Matlab/Simulink®.
Comparison between PI and PR Current Controllers of a Grid- Connected Photovoltaic System Under Load Variation Soukaina Essaghir; Mohamed Benchagra; Noureddine El barbri
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (819.015 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1311-1320

Abstract

This paper presents a current control technique for a three-phase grid-connected DC /AC inverter which is used in photovoltaic systems. A Proportional-Resonant (PR) controller is used for replacing the conventional Proportional-Integral (PI) controller in this system. By comparison with the conventional PI control method, the PR control can introduce an infinite gain at the fundamental frequency and hence can achieve zero steady-state error. The proposed model is based on two control loops: the first control loop regulates DC link voltage and the second one is used to keep the injected current to the grid in phase with the voltage by means of a Phase Locked Loop (PLL) in order to achieve a unit power factor and to adjust the output power as required. In order to examine the effectiveness of the suggested control, a simulation using the Matlab/Simulink software has been done and it’s concluded from the simulation results that the presented control by using the PR controller can be able to maintain maximum active power and to keep always a unity power factor despite variation load.
Error-correcting Coding Usage for Data Transmission Through Power Lines Aleksey Ishchenko; Vladimir Shevelev; Alexander Naronov; Alexander Tcherepanov; Boris Shulgin
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 3: September 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (431.643 KB) | DOI: 10.11591/ijpeds.v9.i3.pp1423-1431

Abstract

A concept of data transmission within downhole telemetry systems in oilfield industry through power lines is presented. Based on this concept, MATLAB/Simulink models simulating communication lines in downhole telemetry systems are built, which can be used as prototypes for development of real systems. The most appropriate signal modulation methods for data transmission in downhole telemetry systems are suggested and discussed. The influence of high-voltage interference on signal transmission through power line from downhole unit to ground based unit is simulated. Usage of error-correcting coding methods for data transmission such as Hamming code, Reed-Solomon code, BCH code is suggested, and its efficiency is demonstrated.
A Complete Modeling and Control for Wind Turbine Based of a Doubly Fed Induction Generator using Direct Power Control Fawzi Senani; Abederrezak Rahab; Hocine Benalla
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (677.983 KB) | DOI: 10.11591/ijpeds.v8.i4.pp1954-1962

Abstract

The paper presents the complete modeling and control strategy of variable speed wind turbine system (WTS) driven doubly fed induction generators (DFIG). A back-to-back converter is employed for the power conversion exchanged between DFIG and grid. The wind turbine is operated at the maximum power point tracking (MPPT) mode its maximum efficiency. Direct power control (DPC) based on selecting of the appropriate rotor voltage vectors and the errors of the active and reactive power, the control strategy of rotor side converter combines the technique of MPPT and direct power control. In the control system of the grid side converter the direct power control has been used to maintain a constant DC-Link voltage, and the reactive power is set to 0. Simulations results using MATLAB/SIMULINK are presented and discussed on a 1.5MW DFIG wind generation system demonstrate the effectiveness of the proposed control.
Design of PI and Fuzzy Logic Controllers for Distribution Static Compensator S.R. Reddy; P.V. Prasad; G.N. Srinivas
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1379.304 KB) | DOI: 10.11591/ijpeds.v9.i2.pp465-477

Abstract

This paper presents study of distribution static compensator (D-STATCOM) for compensation of reactive power, harmonic distortion mitigation and load balancing in three phase three wire nonlinear load distribution system. The proposed control algorithm is developed based on synchronous reference frame theory using PI and FUZZY logic controller. The obtained reference current signal from control algorithm is compared in hysteresis band current controller for better switching of D-STATCOM. The performance of DSTATCOM with PI and fuzzy logic controller is also analysed and compared for DC voltage regulation and harmonic distortion mitigation .The proposed method is provided effective compensation for reactive power, harmonic distortion mitigation and load voltage balancing. The simulation results are obtained using MATLAB/SIMULINK soft ware.
Enhanced Three-Phase Inverter Faults Detection And Diagnosis Approach - Design And Experimental Evaluation Hicham Fadil; Mohamed Larbi Elhafyani; Smail Zouggar
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 2: June 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v9.i2.pp559-570

Abstract

Efficiency, reliability, high power quality and continuous operation are important aspects in electric vehicle attraction system. Therefore, quick fault detection, isolation and enhanced fault-tolerant control for open-switches faults in inverter driving systems become more and more required in this filed. However, fault detection and localization algorithms have been known to have many performance limitations due to speed variations such as wrong decision making of fault occurrence. Those weaknesses are investigated and solved in this paper using currents magnitudes fault indices, current direct component fault indices and a decision system. A simulation model and experimental setup are utilized to validate the proposed concept. Many simulation and experimental results are carried out to show the effectiveness of the proposed fault detection approach.
Small-signal AC model and closed loop control of interleaved three-phase boost converter H.V.Gururaja Rao; Karuna Mudliyar; R.C. Mala
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1169.189 KB) | DOI: 10.11591/ijpeds.v9.i1.pp240-251

Abstract

Renewable energy sources are increasingly being used today and solar energy is the most readily and abundantly available energy source. Boost converters are an integral part of any solar energy system. In order to obtain maximum possible energy from the solar system multi-phase interleaved boost converters are used. This paper presents the small-signal ac modelling and closed loop control of three-phase interleaved boost converter. State–space modelling methodology has been adopted to have linearized equivalent model of the boost converter. The interleaved three-phase boost converter is averaged over its one switching period and perturbed with small ac variations and finally linearized around its quiescent point to have a small signal ac model. Type III compensator is employed to improve the frequency response and closed loop control of three-phase boost converter. The controller design procedure is discussed in detail. The effect of right-half plane zero in non-minimum phase system and the appropriate pole-zero placements to overcome the maximum phase lag in such system is discussed. The compensated closed loop system is tested for load variations to observe the transient response.
A Novel Fuzzy Self Tuning Technique of Single Neuron PID Controller for Brushless DC Motor M.A. Abdel Ghany; Mohamed A. Shamseldin; A.M. Abdel Ghany
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 4: December 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1075.029 KB) | DOI: 10.11591/ijpeds.v8.i4.pp1705-1713

Abstract

In this paper, a combination ANN/Fuzzy technique is used to design a Novel Fuzzy Single Neuron PID (NFSNPID) controller to achieve high performance brushless DC motor. The design steps include two parts. The first part uses the genetic algorithm (GA) to find the optimum parameters of Single Neuron PID (SNPID) controller, while the former deals with the design of fuzzy logic control to update the weights of SNPID control online. To demonstrate the designed controller effectiveness, a comparative study is made with between the NFSNPID, Conventional Fuzzy Single Neuron PID CFSNPID and SNPID. All controllers were used to drive, separately, the brushless DC motor against the sudden change of load and operating speed. The performed simulations show better results that motivate for further investigations.
Analysis of High Voltage High Power Resonant Converters Bhuvaneswari C; R. Samuel Rajesh Babu
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 9, No 1: March 2018
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (382.009 KB) | DOI: 10.11591/ijpeds.v9.i1.pp174-179

Abstract

Various Resonant Converters for high voltage and high power applications have been designed. Different Topologies of LLC, LCC, and CLL Resonant Converters have been simulated and compared for the same input voltage. The simulation was done at a very high frequency. The Output Power and the Efficiency of all the three Resonant Converters were calculated.With the results, it has been proved that LCC Resonant Converters were very much suited to give an output voltage of around 62 Kilovolts with a output power of 20 kilowatts.

Page 1 of 197 | Total Record : 1963