cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 60 Documents
Search results for , issue "Vol 10, No 3: September 2019" : 60 Documents clear
Performance analyses on fluidized bed dryer integrated biomass furnace with and without air preheater for paddy drying M yahya; Hendriwan Fahmi; Syafrul Hadi; Edison Edison
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (512.808 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1555-1563

Abstract

The performance of a fluidized bed dryer integrated biomass furnace with air preheater (FBD with APH) and a fluidized bed dryer integrated biomass furnace without air preheater (FBD without APH) for drying of paddy  have been evaluated. The  FBD with APH and FBD without APH decreased the moisture of paddy from 24% (wet basis) to 14% (wet basis) within 43 and 47 minutes with average temperatures and relative humidities of 59.58 oC and 59.14oC, and 18.81% and 18.68%, respectively. The drying rate of paddy varied in the range of 0.11 kg/min-0.32 kg/min and 0.10 kg/min- 0.30 kg/min for FBD with APH and FBD without APH, with average values of 0.18kg/min and 0.17kg/min, respectively. The minimum, maximum, and average value specific moisture evaporation rate (SMER) was  0.20 kg/kWh, 0.57 kg/kWh, and 0.31 kg/kWh, respectively for FBD with APH, as well as 0.149 kg/kWh, 0.448 kg/kWh, and 0.252  kg/kWh, respectively, for FBD without APH.  The specific energy consumption (SEC), the specific electrical energy consumption (SEEC), and the specific thermal energy consumption (STEC) were varied from 1.749 kWh/kg to 5.076 kWh/kg, 0.090 kWh/kg to 2.872 kWh/kg, and 0.760 kWh/kg to 2.204 kWh/kg, with average values of 3.528 kWh/kg, 1.96 kWh/kg, and 1.532 kWh/kg, respectively for FBD with APH, as well as from 2.234 kWh/kg to 6.702 kWh/kg, 1.056 kWh/kg to 3.167 kWh/kg, and 1.179 kWh/kg to 3.536 kWh/kg, with average values of 4.391 kWh/kg, 2.075 kWh/kg, and 2.316 kWh/kg, respectively, for FBD without APH. The thermal efficiencies of the FBD with APH and  FBD without APH were varied between 12.4% and 37.93%, and 9.78% and 29.82%, resvectively, with average values of 20.78% and 16.61%. The thermal efficiency of FBD with APH was higher compared to FBD without APH.
A novel single-phase PWM asymmetrical multilevel inverter with number of semiconductor switches reduction S. Kakar; S. M. Ayob; N. M. Nordin; M. S. Arif; A. Jusoh; N. D. Muhamad
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (558.595 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1133-1140

Abstract

In this paper, a new asymmetrical multilevel inverter topology (MLI) is proposed with the objectives of using decreased number of semiconductor switches, dc voltage sources, gate driver circuits and dc links. The structure of presented MLI is very simple and modular. The fundamental module of this structure consists of nine semiconductor switches (eight unidirectional and one bidirectional) and four asymmetrical configured DC sources (ratio of 1:2), which can generate 13-level output voltage. To validate the design, a Matlab-Simulink based model is developed. For this paper, a Sinusoidal Pulse Width Modulation (SPWM) is deployed as the switching strategy of the proposed MLI. The circuit model is simulated under pure resistive and inductive loads. It will be shown that the circuit performs well under both loads. Comparison with traditional MLIs and other recently introduced MLIs will be conducted to show the superiority of the proposed MLI in terms of reduced number of devices and lower voltage stress across the switches.
Broken rotor bar fault diagnostic for DTC Fed induction motor using stator instantaneous complex apparent power envelope signature analysis Lachtar Salah; Ghoggal Adel; Koussa Khaled; Bouraiou Ahmed; Attoui Issam
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (518.131 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1187-1196

Abstract

The broken rotor bar is an unexpected fault and a common cause of induction motor failures that threaten the structural integrity of electric machines. In this paper, a new approach to a broken rotor bar diagnosis, without slip estimation, based on the envelope of the stator instantaneous complex apparent power (SICAP) is proposed. The envelope is obtained from the SICAP modulation and then transferred to a computer for monitoring the characteristic frequency and its amplitude using the Fast Fourier Transform (FFT). For this purpose, the winding function approach (WFA) is used to simulate the broken rotor bar occurrence in a squirrel cage induction motor (SCIM) fed on direct torque control (DTC). The obtained simulation results confirm the interest and efficiency of the proposed technique. Even when the induction motor is operating at the no-load level condition, the proposed method is also efficient to detect the broken rotor bar fault at low slip.
Development of PV array configuration under different partial shading condition Mohammad Syahir Bin Ishak; Rahmatul Hidayah Salimin; Ismail Musirin; Zulkiffli Abdul Hamid
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (375.474 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1263-1269

Abstract

This paper investigates the performances of different photovoltaic (PV) array under several shading condition. Four types of photovoltaic array configuration scheme which are ‘Series’ (S), Series-Parallel’ (SP), Total-Cross-Tied’ (TCT), and ‘Bridge-Link’ (BL) array topologies were tested by applying a 6x6 PV array under 6 different shading scenarios. The modeling is developed using Matlab/Simulink. The performances and output characteristics of photovoltaic array are compared and analyzed. System engineer can use the detailed characteristics of different array configuration to approximate the outcome power and pick the best configuration of the system by concerning the current natural condition to enhance the overall efficiency.
Conceptual study on Grid-to-Vehicle (G2V) wireless power transfer using single-phase matrix converter Muhammad Qusyairi Iqbal Mohd Zamani; Rahimi Baharom; Dalina Johari
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (413.143 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1382-1388

Abstract

This paper presents the conceptual study on grid-to-electric vehicle (G2V) wireless power transfer (WPT) using Single Phase Matrix Converter (SPMC). In this work, the SPMC is used as a direct AC to AC converter to convert the input supply voltage at 50 Hz frequency to the output of 20 kHz to meet the WPT switching frequency operation of the transmitter and receiver coils. The high frequency AC voltage of the receiver coil is then rectified to a DC form by using SPMC. Through the proposed system, the battery of an electric car can be charged wirelessly, thus removing the annoying wires of the conventional electric vehicle charging system. The reduction in size of the charging system, power losses and optimum efficiency are among the advantages of the proposed system. MATLAB/Simulink (MLS) has been used to simulate the proposed model. Selected simulation result are presented to verify the proposed work.
Power flow variation based on extreme learning machine algorithm in power system Labed Imen; Labed Djamel
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (383.583 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1244-1254

Abstract

The main focus of this paper is a study that empowers us to understand how the temperature variation affects the transmission line resistance and as a result the power flow analysis with a specific end goal to assess losses in the electrical network. The paper is composed of two sections; the first part is a power flow study under normal conditions utilizing the neural network approach while the second investigated extreme learning machine algorithm efficiency and exactitude. Extreme learning machine algorithm has been used to settle several complications in power system: load forecasting, fault diagnosis, economic dispatch, security, transient stability; Thus, we proposed to study this technique to figure out this sort of complex issue.The study was conducted for IEEE 30 bus test system. The simulation results are exposed and analyzed in detail at the end of this paper.
Output energy maximization of a single axis photovoltaic solar tracking system: experimental verification Shin-Horng Chong; N. N. Chandren; C. R. Allan Soon
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (405.548 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1655-1661

Abstract

Major depletion of fossil fuel and the increase of greenhouse gasses such as carbon dioxide, chloroflurocarbons (CFCs), hydroflurocarbon (HFCs), perflurocarbons (PFCs) and Sulphur hexafluoride (SF6) worldwide are the catalyst for the interest of many counties towards renewable energy. The rising cost of electricity due to higher demand and less resource also led to the renewable energy venture. One of the most famous renewable energy is solar energy. Unfortunately, renewable energies are dependent on environment conditions, too. One of the major problems that affect the output energy of the solar panel is the cloud shadowing problem. Photovoltaic solar and wind hybrid system is capable to reduce the effects of the cloud shadowing by harvesting two different energy resources. However, the availability of wind energy harvesting has shown its instability performance. In this work, the photovoltaic solar array of the laboratory-scale single axis solar tracking system to maximize the output energy of the solar panel is examined experimentally. The solar array is connected in series and parallel configurations, and is experimented under different partical-shadowed conditions. The experimentation is done to develop a solar array that has a minimum effect towards this type of occurances. Experimental results proved that the parallel configured solar panel has showed less influence by the cloud shadowing as compared to the single one.
Multilevel inverter with MPWM-LFT switching strategy for voltage THD minimization M. H. Yatim; A. Ponniran; A. N. Kasiran
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (421.006 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1461-1468

Abstract

This paper presents a proposed modified pulse width modulation – low frequency triangular (MPWM-LFT) switching strategy for minimization of voltage THD with implementation of asymmetric multilevel inverter (AMLI) topology on the reduced number of switching devices (RNSD) circuit structure. Principally, MPWM-LFT able to produce optimum angle of the output voltage level in order to minimize total harmonic distortion (THD). In this study, 5-level reduced number of switching devices circuit structure is selected as a circuit configuration for asymmetric (7-level structure) multilevel inverter. For switching strategy, MPWM used low switching frequency in producing signal and needs higher output voltage levels to achieve low total harmonic distortion. In contrast, sinusoidal pulse width modulation used high switching frequency in order to minimize total harmonic distortion. By optimizing angle at the output voltage using MPWM-LFT switching strategy, the voltage THD is lower as compared to MPWM and SPWM switching strategies. MPWM-LFT switching strategy obtains 11.6% of voltage THD for the 7-level asymmetric topology as compared to MPWM and SPWM switching strategies with the voltage THD are 21.5% and 17.5% respectively from the experimental works.
Control of the photoelectric generator for used in feeding of the independent wind turbine system Mohammed Kendzi; Abdelghani Aissaoui; Mohamed Abid; Ahmed Tahour
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (736.845 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1613-1627

Abstract

In this paper, a hybrid power system is proposed to eliminate any interruption caused to absence of power supply network by the Fusion between the wind source and the photovoltaic source to create a hybrid system with internal power supply autonomy. The hybrid power system includes a solar and wind source whose wind energy conversion system is based on a doubly fed induction generator. The photovoltaic conversion system extracts the maximum power from the sun. A part of this power is used to supply the rotor of a doubly fed induction generator; the rest is injected in the grid. The connection between the two conversion systems is made by means of static converters (chopper/inverter). In the photovoltaic conversion chain, a controller for tracking the maximum power point is designed using the direct search approach the Perturb and observe method. The wind energy conversion system contains a doubly fed asynchronous generator with a control system of generated powers by the technique of the fuzzy logic. The simulation was done to prove the validity of the strategy and of the control method used for the control of the power generated by the hybrid system.
Maximum power point optimization for a grid synchronized PV system considering partial shaded condition using multi-objective function Sathyanarayana P; Rajkiran Ballal; Girish Kumar; Shaileshwari S
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 10, No 3: September 2019
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (388.205 KB) | DOI: 10.11591/ijpeds.v10.i3.pp1547-1554

Abstract

Energy demand taking a bigger leap day by day, Renewable energy gets the  most leading importance in catering the purpose. Solar being the abundantly available renewable energy resource solar panels are key components in harnessing solar energy. Solar energy is the most dependable and cheap energy in renewable sector. But harnessing solar energy with partial shading makes it difficult for simple tracking algorithm because of multiple power peak points. Settling time of DC link voltage during the dynamics in the load and the irradiation also plays a major role in power delivered to the grid . Highly dynamic situation aware processors have been in the verge for many applications where large amount of online processing is a need like the smart grid, which needs a faster online reacting time. This paper deals with such an online reacting Maximum Power Point Optimization (MPPO) on a PV system with Partial shaded condition (PSC). The MPPO uses the recent non-parametric optimization techniques like Particle Swarm Optimization (PSO) for maximizing the power delivered from the solar panel. This optimization is achieved by populating the duty cycle and Kp and Ki parameters of PI controller given to the DC-DC converter connected to the PV arrays for the stable supply to the grid. While applying the maximization algorithm for the solar power output from the PV arrays the PSC conditions are considered in order to make the control technique more robust. This paper deals with minimization of DC link voltage settling time and maximization of power in multi-objective,. MATLAB based simulation is carried and the comparative inference is produced in this paper. The simulation is developed for the 2.5kW PV array with the proposed method. The simulation carried out had performed better with the proposed method than the single objective method.Satisfactory results were observed both in the simulation of the proposed algorithm.