cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Power Electronics and Drive Systems (IJPEDS)
ISSN : -     EISSN : 20888694     DOI : -
Core Subject : Engineering,
International Journal of Power Electronics and Drive Systems (IJPEDS, ISSN: 2088-8694, a SCOPUS indexed Journal) is the official publication of the Institute of Advanced Engineering and Science (IAES). The scope of the journal includes all issues in the field of Power Electronics and drive systems. Included are techniques for advanced power semiconductor devices, control in power electronics, low and high power converters (inverters, converters, controlled and uncontrolled rectifiers), Control algorithms and techniques applied to power electronics, electromagnetic and thermal performance of electronic power converters and inverters, power quality and utility applications, renewable energy, electric machines, modelling, simulation, analysis, design and implementations of the application of power circuit components (power semiconductors, inductors, high frequency transformers, capacitors), EMI/EMC considerations, power devices and components, sensors, integration and packaging, induction motor drives, synchronous motor drives, permanent magnet motor drives, switched reluctance motor and synchronous reluctance motor drives, ASDs (adjustable speed drives), multi-phase machines and converters, applications in motor drives, electric vehicles, wind energy systems, solar, battery chargers, UPS and hybrid systems and other applications.
Arjuna Subject : -
Articles 52 Documents
Search results for , issue "Vol 8, No 1: March 2017" : 52 Documents clear
Experimental Verification of the main MPPT techniques for photovoltaic system Mohamed Amine Abdourraziq; Mohamed Maaroufi
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1105.448 KB) | DOI: 10.11591/ijpeds.v8.i1.pp384-391

Abstract

Photovoltaic (PV) technology is one of the important renewable energy resources as it is pollution free and clean. PV systems have a high cost of energy and low eciency, consequently, they not made it fully attractive as an alternative option for electricity users. It is essential that PV systems are operated to extract the maximum possible power at all times. Maximum Power Point (MPP) changes with atmospheric conditions (radiation and temperature), it is dicult to sustain MPP at all atmospheric levels. Many Maximum Power Point Tracking (MPPT) have been developed and implemented. These methods varied according to several aspects such as a number of sensors used, complexity, accuracy, speed, ease of hardware implementation, cost and tracking eciency. The MPPT techniques presented in the literature indicate that Variable step size of Perturb & Observe (VP&O), Variable step size of Incremental Conductance (VINC) and Perturb & Observe (P&O) using Fuzzy Logic Controller (FLC) can achieve reliable global MPPT with low cost and complexity and be easily adapted to dierent PV systems. In this paper, we established theoretical and experimental verication of the main MPPT controllers (VP&O, VINC, and P&O using FLC MPPT algorithms) that most cited in the literature. The three MPPT controller has been tested by MATLAB/Simulink to analyze each technique under dierent atmospheric conditions. The experimental results show that the performance of VINC and P&O using FLC is better than VP&O in term of response time.
Design and Development of a Wind Turbine Emulator for Analyzing the Performance of Stand-alone Wind Energy Conversion System M.A. Bhayo; M.J.A. Aziz; N.R.N. Idris; A.H.M. Yatim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (432.671 KB) | DOI: 10.11591/ijpeds.v8.i1.pp454-461

Abstract

This paper describes the design and development of a Wind Turbine Emulator (WTE), which can be used to analyze and assess the performance of Wind Energy Conversion System (WECS). The mathematical modeling of the WTE has been done using MATLAB/Simulink platform.  A separately excited DC motor is deployed in order to reproduce the speed/torque, replacing the real wind turbine rotor. The half-bridge DC-DC power converter is developed to run the DC motor in a controlled fashion. Two PI controllers viz speed and current controller are employed which guarantee that the DC motor is following the theoretical (reference) rotational speed of the turbine rotor. A user interface is created in ControlDesk Next Generation, through which the input parameters of the WTE can be altered in real time and the instantaneous effect can be observed by analyzing the output parameters. The designed system offers wide range flexibility and provides a friendly environment in which wind speed and turbine parameters can be altered easily. Hence, offering user to conduct research on variable wind speeds. The DS1104 R&D controller board is employed for implementation of the developed Simulink model. The system design, the model used, and obtained results are presented in this paper. 
Using Green Emitting Phosphor for Improving Lighting Performance of In-cup Package White LED Lamps Phu Tran Tin; Nguyen Huu Khanh Nhan; Tran Hoang Quang Minh
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (346.067 KB) | DOI: 10.11591/ijpeds.v8.i1.pp125-129

Abstract

LED technology had a huge development in recent years with major benefits: long-life, high-efficiency, excellent performance, compactness. In this work, an innovative method for improving the performance of multi-chip white LED lamps (MCW-LEDs) by adding the green Ce0.67 Tb0.33 MgAl11 O19:Ce,Tb (CeTb) phosphor to their in-cup phosphor compounding is proposed, investigated and demonstrated. Firstly, CeTb was mixed to the in-cup phosphor package of MCW-LEDs. Then by varying CeTb concentration, lumen output and angular color uniformity (ACU) of MCW-LEDs was calculated and analyzed. The results showed that the lumen output and the ACU of 7000 K and 8500 K MCW-LEDs increased significantly in comparison with others related works. This method is a prospective ideal for future improving LED manufacture.
Power Control of DFIG-generators for Wind Turbines Variable-speed Ihedrane Yasmine; El Bekkali Chakib; Bossoufi Badre
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (895.38 KB) | DOI: 10.11591/ijpeds.v8.i1.pp444-453

Abstract

In this paper, we focus on the modeling and control of a wind power system based on a double-fed induction generator DFIG. We proposed a technique of active and reactive power control to improve the performance and dynamics of variable speed wind system. The objective of the modeling is to apply the direct and indirect vector control stator flux orientation to control independently, the active and reactive power generated doubly-fed induction generator (DFIG). The simulation results are tested and compared in order to evaluate the performance of the proposed system.
An Efficient Control Implementation for Inverter Based Harmony Search Algorithm Mushtaq Najeeb; Hamdan Daniyal; Ramdan Razali; Muhamad Mansor
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (921.437 KB) | DOI: 10.11591/ijpeds.v8.i1.pp279-289

Abstract

This research implements a PI controller based on harmony search (HS) optimization algorithm for voltage source inverter to improve the output performance under step load change conditions. The HS algorithm aims to handle the trial and error procedure used in finding the PI parameters and then apply the proposed control algorithm via the eZdsp TMS320F28355 board to link the inverter prototype with the Matlab Simulink. The mean absolute error (MAE) is used as an optimization problem to minimize the output voltage error for the developed controller (PI-HS) as compared to the PI controller based particale swarm optimization algorithm (PI-PSO). Based on the experimental results obtained, it is noted that the proposed controller (PI-HS) provides a good dynamic performance, robustness, constant voltage amplitude, and fast response in terms of overshoot, transient, and steady-state.
Starting Operating Mode of the Combined Traction Levitation System of the Vehicle Equipped with Magnetic Suspension A.V. Kireev; G.N. Kononov; A.V. Lebedev
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (825.707 KB) | DOI: 10.11591/ijpeds.v8.i1.pp176-183

Abstract

The article gives the experimental results of the processes occurring in the combined system of traction and magnetic suspension, which was implemented on the basis of the linear switched reluctance motor. The goal of the research is to examine the possibility to combine the levitation and traction functions within one unit. The full- function physical model of the transport system with the magnetic suspension has been produced for experimental verification of the development concept for the combined system of traction and magnetic suspension. The research tests have been performed at the track structure with the limited length in order to study the processes, occurring in the most complicated start-up mode, when the discrete behavior of current in windings has the disturbance effect on the object levitation. The oscillograms of electromechanical transition processes, showing the mutual influence of traction subsystems and a suspension, are provided. The results of researches have illustrated dramatically that the development concept of the combined system of traction and magnetic suspension, based on the linear switched reluctance motor, is absolutely real. Further researches should be aimed at improving the system characteristics by reducing the mutual influence of levitation and traction processes.
Single Switched Non-isolated High Gain Converter Lopamudra Mitra; Ullash Kumar Rout
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (406.44 KB) | DOI: 10.11591/ijpeds.v8.i1.pp20-30

Abstract

This paper presents a new single switched inductor- capacitor coupled transformer-less high gain DC-DC converter which can be used in renewable energy sources like PV, fuel cell in which the low DC output voltage is to be converted into high dc output voltage. With the varying low input voltages, the output of DC-DC converter remains same and does not change. A state space model of the converter is also presented in the paper. This constant output voltage is obtained by close loop control of converter using PID controller. High voltage gain of 10 is obtained without use of transformer. All the simulations are done in MATLAB-SIMULINK environment.
Hovering Control of Quadrotor Based on Fuzzy Logic Nia Maharani Raharja; Eka Firmansyah; Adha Imam Cahyadi; Iswanto Iswanto
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (541.696 KB) | DOI: 10.11591/ijpeds.v8.i1.pp492-504

Abstract

Quadrotor is one of rotary wing UAV types which is able to perform a hover position. In order to take off, landing, and hover, it needs controllers. Conventional controllers have been widely applied in quadrotor, yet they have drawbacks namely overshoot. This paper presents attitude and altitude control algorithm in order to obtain a response as quadrotor hovered optimally within minimum overshoot, rise time, and settling time. The algorithm used is Fuzzy Logic Controller (FLC) algorithm with Mamdani method. By using the algorithm, the quadrotor is able to hover with minimum overshoot and maximum rise time. The advantage of the algorithm is that it does not require linearization model of the quadrotor.
Quasi-Z-Source Inverter Topologies with Reduced Device Rating: a Review V. Raghavendra Rajan; Premalatha L.
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (575.168 KB) | DOI: 10.11591/ijpeds.v8.i1.pp325-334

Abstract

Quasi-Z-Source Inverter (QZSI) has introduced a new wave of interest in engineering industry and research. Reduction in device rating has been the main objective in introducing QZSI topologies. The introduced topologies in QZSI have proven to be feasible in a wide range for high power with medium voltage applications. This paper mainly focuses on QZSI topologies with continuous input current conduction and also power conditioning in the renewable energy system. Based on a detailed comparison of these topologies suitable QZSI can be arrived for a given application.
Design and Investigation of Outer Rotor Permanent Magnet Flux Switching Machine for Downhole Application Rajesh Kumar; Erwan Sulaiman; Mahyuzie Jenal; Laili Iwani Jusoh; Fatihah Shafiqah Bahrim
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 8, No 1: March 2017
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (720.616 KB) | DOI: 10.11591/ijpeds.v8.i1.pp231-238

Abstract

Permanent magnet flux switching machine (PMFSM) is a joint venture of switch reluctance machine (SRM) and permanent magnet synchronous machine (PMSM). It has become a prominent research topic for various applications because of robust rotor structure, high torque and power densities but few were developed for downhole applications mainly due to harsh environmental conditions. Formerly, most of developed PMFSMs for downhole applications were mainly concentrated on inner-rotor type design, and difficult to find research work on outer-rotor configuration. Therefore, this paper introduces the design and investigation of PMFSM with outer-rotor configuration for downhole application. Primarily, the geometric topology of proposed design is described in detail. Then, the no load and load analysis are implemented in order to investigate the initial performance of the proposed design.