cover
Contact Name
Ari Pramudyantoro
Contact Email
ajche.ft@ugm.ac.id
Phone
+62274555320
Journal Mail Official
ajche.ft@ugm.ac.id
Editorial Address
Jln. Grafika No. 2 Kampus UGM Yogyakarta Indonesia 55281
Location
Kab. sleman,
Daerah istimewa yogyakarta
INDONESIA
ASEAN Journal of Chemical Engineering
ISSN : 26555409     EISSN : 26555409     DOI : https://doi.org/10.22146/ajche.52004
The ASEAN Journal of Chemical Engineering publishes papers on Chemical Engineering, specifically but not limited to the areas of thermodynamics, reaction kinetics, transport phenomena, process control, environment, energy, biotechnology, corrosion, separation science, powder technology, materials science, and chemical engineering education
Articles 362 Documents
A Thermodynamic Study of Methane Hydrates Formation In Glass Beads Tintin Mutiara; Budhijanto Budhijanto; I Made Bendiyasa; Imam Prasetyo
ASEAN Journal of Chemical Engineering Vol 16, No 1 (2016)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (916.982 KB) | DOI: 10.22146/ajche.49670

Abstract

Natural gas hydrates are non-stoichiometry compounds, in which the molecules of gas are trapped in crystalline cells consisting of water molecules retained by energy of hydrogen bonds. The experiments of Methane hydrate formation are performed at constant temperature in a reactor filled with various sizes of glass beads and water. Methane gas was fed into the reactor at various initial pressures. Equilibrium condition was reached when the system pressure did not change. The experimental results showed that the size of the glass beads gave very small effect on the equilibrium pressure of methane hydrate formation, so the effect could be neglected. In this study, the equation of Langmuir constant was Ci,CH4=(1/RT)exp[A+(B/T)] with the values of A and B for small cages were 6.8465 and 18.0342. The values of A and B for large cages were 7.7598 and 18.0361
Packed Bed Biosorption of Lead and Copper Ions Using Sugarcane Bagasse Norwin Dale F Duga; Pauline Edrickke A Imperial; Allan N Soriano; Aileen D Nieva
ASEAN Journal of Chemical Engineering Vol 16, No 1 (2016)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1119.124 KB) | DOI: 10.22146/ajche.49671

Abstract

Bagasse, a waste material from sugarcane has been studied as a biosorbent for removing heavy metals, Pb2+ and Cu2+, in a continuous system using a packed bed column. This study was undertaken to determine the influence of varying the bed height and flow rate on the breakthrough and saturation time. Thomas, Adams-Bohart and Yoon-Nelson models were used to assess the effects of varying parameters and both Thomas and Yoon-Nelson models were found to be satisfactory to describe the column data obtained in the experiment. Moreover, lead ions are adsorbed more efficiently with an adsorption capacity of 4.54 mg/g compared to copper ions with 3.98 mg/g at the most feasible parameters having a flow rate of 100 mL/min and a bed height of 30 cm
Production of Lipids from Municipal Sewage Sludge by Two Stage Extraction Process Bharathi P.; Pennarsi M.
ASEAN Journal of Chemical Engineering Vol 16, No 1 (2016)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (929.497 KB) | DOI: 10.22146/ajche.49672

Abstract

In this investigation, municipal sewage sludge was used as a lipid feedstock. Two stage extraction processes was developed to obtain good yield of lipid content. The maximum lipid yields 32.5% was achieved from chloroform: methanol solvents through optimum conditions of 2:1 ratio, 50oC temp for 30 min. The lipid content was characterized by TLC analysis. The lipid properties were analyzed and proved as a lipid. Hence, municipal sewage sludge serves as a valuable raw material for lipid production
The Effect of Temperature on Extraction of Swietenia Mahagoni by Ultrasound–assisted Extraction (UAE) Method Ike Dayi Febriana; Heri Septya Kusuma; Selfina Galan; Mahfud Mahfud
ASEAN Journal of Chemical Engineering Vol 16, No 1 (2016)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1147.917 KB) | DOI: 10.22146/ajche.49673

Abstract

Azo dyes are synthetic organic dyes which have azo group (-N=N-) as chromophore. Waste of azo dyes have not been able to overcome completely so that requires solutions of natural dye. Raw material of natural dye can be obtained from Swietenia mahagoni. Natural dye can be extracted by ultrasound-assisted extraction (UAE) method. The pupose of this research is to study the factor that influence UAE. Observed factor is influence of extraction temperature to the yield of natural dye. This research was conducted using ratio of material to solvent of 0.05 g/L with extraction time at 40 minute. Extraction temperature was observed at 30, 40, and 50oC. Ultrasonic wave that used for this research at 40 kHz. The result is increasing temperature will be allow the increasing trend of yield. The result indicate that there is about 9.2748% improvement in the yield of extract due to increasing extraction temperature from 30oC to 50oC
Effects of Cassava Chips Fermentation Conditions on The Produced Flour Properties Angina Meitha; Yazid Bindar; M.T.A.P. Kresnowati
ASEAN Journal of Chemical Engineering Vol 16, No 1 (2016)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (899.399 KB) | DOI: 10.22146/ajche.49674

Abstract

A fermentation process to produce soft-texture and low cyanogenic content cassava flour had been studied, in particular the effects of temperature, circulation of the fermentation media, and chips size, on fermented cassava flour (fercaf) properties. Fermentation was shown to affect properties of cassava flour: reducing the cyanogenic content, swelling power, as well as solubility, whereas on the other hand increasing the amylose content and correspondingly the measured DE. Further, the properties of the produced flour were affected by the implemented fermentation operation conditions. Fermentation temperature was found to significantly affect amylose content. Media circulation was found to significantly affect the measured Dextrose Equivalent. On the other hand, the size of cassava chips significantly affected the cyanogenic content and solubility of the flour
Effect of Sintering Temperature on the Fabrication of Ceramic Hollow Fibre Membrane Syafikah H Paiman; Mukhlis A A Rahman; Mohd Hafiz Dzarfan Othman; Siti Halimah Ahmad
ASEAN Journal of Chemical Engineering Vol 15, No 2 (2015)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1041.919 KB) | DOI: 10.22146/ajche.49682

Abstract

Recently, ceramic membrane gradually acquired attention from researchers due to the advantages of ceramic’s behavior, which allows the ceramic to overcome the limitations of using polymeric membrane. This work focused on the fabrication of ceramic hollow fibre membrane from a ceramic suspension solution containing yttria-stabilized zirconia (YSZ), polyethersulfone (PESf), N-methylpyrrolidone (NMP) and dispersants using combined phase inversion sintering technique. In this study, ceramic hollow membrane precursors were sintered at different sintering temperature ranging between 1250°C and 1400°C. The influences of sintering temperature on the microstructure, porosity and pore size distribution, mechanical strength and pure water flux of ceramic hollow fibre membrane were investigated in detail. The results show an asymmetric structure of YSZ hollow fibre membrane containing finger-like structure and sponge-like structure. The sponge-like structure can serve as a separation layer, while finger-like-structure performs as a supported layer. It is observed that sintering process caused a significant densification of sponge-like structure (microstructure). Sintering at temperature 1400°C shows the formation of non- interconnected voids. Sintering at 1300°C is sufficient enough having a mechanical strength of 227.55MPa with an apparent porosity of 45.09% and PWF of 118.39L.m¯².hr¯¹.
A Morphology Studies On Effect Of A Coagulation Bath Mediums As The Phase Inversion Parameter For Poly (Vinylidene Fluoride) (Pvdf) Membranes A.R. Nurul Izzati; M.D. Irfan Hatim; H Hasbullah; Adil Hatem Rashid
ASEAN Journal of Chemical Engineering Vol 15, No 2 (2015)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1036.417 KB) | DOI: 10.22146/ajche.49683

Abstract

In recent years there has been a considerable interest in modifying the PVDF membrane properties to suit with a wide range of applications. However, due to the multivariate nature in membrane fabrication steps, the fabrication techniques remain the key issue. In this article, the uses of different concentration of ethanol in the coagulation bath were investigated as it can improve the hydrophobicity of PVDF membrane and the membrane porous microstructure, i.e. finger-like microstructure. In addition, the coagulation mediums play an important role in determining extended of liquid-liquid demixing/crystallization via an immersion precipitation process. In this study, the effects of coagulation bath mediums on the morphology of PVDF membrane were investigated. Scanning electron microscope (SEM) was used to characterize the membrane microstructure. Octanol was used as a medium to estimate porosity of the membrane by determining the weight of liquid occupied within the membrane pores. The concentration of ethanol in the coagulation bath was varied at 0% until 75% with different evaporation time of 0 and 2 min. The SEM results indicate that the membrane surface porosity changes as ethanol concentration increases. Interestingly, at 0 to 25% ethanol, an asymmetric structure which consists of a dense skin layer accompanied by finger-like structure was formed during membrane casting. The more porous finger-like region which extends towards the skin layer is beneficial for membrane fuctionalization.
Comparison of Thermal Properties of PCB Photoresist Films Cured by Different Techniques Piyachat Wattanachai; Christian Antonio; Susan Roces
ASEAN Journal of Chemical Engineering Vol 15, No 2 (2015)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1104.156 KB) | DOI: 10.22146/ajche.49684

Abstract

The possibility of implementing microwave technology to photoresist film curing which is a major process in the production of electronic printed circuit boards (PCB) was investigated and compared with a conventional curing method, e.g. UV lithography. Since both techniques involved irradiation, hot plate curing which relies on thermal conduction was undertaken to study the effect of a heat transfer approach. Two film thicknesses were studied, i.e. 0.0012 and 0.002 inch, and the effects of curing power and time were investigated. Thermal properties, i.e. percent cure, glass transition temperature (Tg), composition and degradation temperature (Td), were evaluated using a Differential Scanning Calorimeter (DSC) and Thermogravimetric Analysis (TGA) and it was found that the commercial UV irradiation was sufficient to completely cure the thin film but only reached 76% cure for the thicker film, resulting in a lower Tg. The results show that the required processing conditions using a conventional household microwave to obtain almost complete curing were 1,000 Watts and 10 minutes curing time. In addition, improved curing was achieved in the thicker film because microwave can transmit into polar materials whereas UV cannot penetrate very far into the material. The hot plate curing was observed to produce a higher degree of curing and Tg, however, the uniformity of heating was found to be a major limiting factor of this technique. Slight differences in decomposition profiles of the films cured by different techniques implied slight differences in molecular structures. Compared to UV and hot plate curing, microwave technology was demonstrated as a potential curing technique in the production of PCBs due to its ability to efficiently cure thick films resulting in a strong material with high Tg. To apply the technique to other processes, optimal conditions, i.e. power and time, should be further investigated as well as the prevention of hot spots.
Prediction of Density of Binary Mixtures of Ionic Liquids with Alcohols (Methanol/Ethanol/1-Propanol) using Artificial Neural Network Karen Faith P. Ornedo Ramos; Carla Angela M. Muriel; Adonis P Adornado; Allan N Soriano; Vergel C Bungay
ASEAN Journal of Chemical Engineering Vol 15, No 2 (2015)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1642.479 KB) | DOI: 10.22146/ajche.49685

Abstract

Ionic liquids demonstrated successful potential applications in the industry most specifically as the new generation of solvents for catalysis and synthesis in chemical processes, thus knowledge of their physico-chemical properties is of great advantage. The present work presents a mathematical correlation that predicts density of binary mixtures of ionic liquids with various alcohols (ethanol/methanol/1-propanol). The artificial neural network algorithm was used to predict these properties based on the variations in temperature, mole fraction, number of carbon atoms in the cation, number of atoms in the anion, number of hydrogen atoms in the anion and number of carbon atoms in the alcohol. The data used for the calculations were taken from ILThermo Database. Total experimental data points of 1946 for the considered binaries were used to train the algorithm and to test the network obtained. The best neural network architecture determined was found to be 6-6-10-1 with a mean absolute error of 48.74 kg/m3. The resulting correlation satisfactorily represents the considered binary systems and can be used accurately for solvent related calculations requiring properties of these systems.
Mechanical and Thermal Properties of Geopolymers from Mixtures of Coal Ash and Rice Hull Ash using Water Glass Solution as Activator Martin Ernesto L. Kalaw; Alvin B Culaba; Hoc Thang Nguyen; Khoi Nguyen; Hirofumi Hinode; Winarto Kurniawan; Susan M Gallardo; Michael Angelo B. Promentilla
ASEAN Journal of Chemical Engineering Vol 15, No 2 (2015)
Publisher : Department of Chemical Engineering, Universitas Gadjah Mada

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (838.478 KB) | DOI: 10.22146/ajche.49686

Abstract

Geopolymers, from industrial wastes such as blast furnace slag, red mud, and coal ash, among others, have emerged as technically viable, economically competitive, and environmentally attractive supplements and even alternatives to ordinary Portland cement (OPC). Furthermore, while the most impact shall be achieved with large-scale use in the general building and structural sector, as replacement or supplement to OPC, the properties of these geopolymers may be optimized for special niche applications. One of these applications is for light weight, low thermal conductivity, heat resistant, and moderate strength cement binder for low rise residential buildings. In this study, compressive strength, heat resistance, volumetric weight, mass loss, water absorption and thermal conductivity of geopolymers formed from mixtures of coal bottom ash and rice hull ash (CBA-RHA) and coal fly ash and rice hull ash (CFA-RHA) with sodium silicate solution (modulus 2.5) as activator were evaluated. Using mixture design and the JMP statistical software, the CBA-RHA combination at a mass ratio of 46% CBA, 32% RHA with 22% WGS gave properties at maximum desirability of 17.6 MPa compressive strength, 1640 kg/m3 volumetric weight, 273 kg/m3 water absorption, 28 MPa compressive strength after high temperature exposure (1000oC for 2 hours) with 4.4% mass loss, and 0.578 W/m-K thermal conductivity. On a performance basis, even as the geopolymers are formed as paste, these properties fall within the standards for lightweight OPC based-concrete with strength requirements for residential buildings. The low thermal conductivity and higher strength after high temperature exposure vis-à-vis OPC are additional advantages for consideration.

Page 5 of 37 | Total Record : 362