cover
Contact Name
Esther Irawati Setiawan
Contact Email
esther@istts.ac.id
Phone
+62315027920
Journal Mail Official
insyst@istts.ac.id
Editorial Address
Kampus Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya) Ngagel Jaya Tengah 73-77, Surabaya, Indonesia
Location
Kota surabaya,
Jawa timur
INDONESIA
Insyst : Journal of Intelligent System and Computation
ISSN : 26219220     EISSN : 27221962     DOI : https://doi.org/10.52985/insyst
Core Subject : Science,
The Intelligent System and Computation Journal will be published for 2 editions in a year, every April and October. The Intelligent System and Computation Journal is an open access journal where full articles in this journal can be accessed openly. Review in this journal will be conducted with a blind review system. All articles in this journal will be indexed by Google Scholar. The topics contained in this journal consist of several fields (but not limited to): Algorithms and complexity Artificial Intelligence Big Data Analytics Biomedical Instrumentation Computational logic Computer Vision and Biometric Data and Web Mining Digital Signal Processing Image Processing Information Retrieval & Information Extraction Intelligence Embedded Systems Machine Learning Mathematics and models of computation Natural Language Processing Parallel & Distributed Computing Pattern Recognition Programming languages and semantics Speech Processing Virtual Reality & Augmented Reality
Articles 7 Documents
Search results for , issue "Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation" : 7 Documents clear
Stance Classification Pada Berita Berbahasa Indonesia Berbasis Bidirectional LSTM Esther Irawati Setiawan; Ika Lestari
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.148

Abstract

Berita palsu masih menjadi masalah yang harus mendapat perhatian khusus. Media sosial, termasuk Facebook menjadi salah satu sarana yang mudah dan murah untuk menyebarkan suatu informasi yang bahkan belum tentu kebenarannya. Informasi tentang kesehatan menjadi salah satu topik berita palsu yang banyak tersebar ke masyarakat. Cara yang berbeda untuk mendeteksi berita palsu yaitu dengan menggunakan deteksi sikap (stance detection). Tujuan utama dari penelitian ini adalah merancang model yang memiliki kemampuan terbaik untuk melakukan tugas stance classification pada konteks bahasa Indonesia. Model ini diharapkan dapat digunakan untuk berkontribusi dalam menanggulangi masalah penyebaran berita palsu, khususnya di Indonesia. Metode BiLSTM dan GRU diusulkan untuk digunakan dalam melakukan stance classification terhadap headline berita dengan kelas for (mendukung), against (menentang), dan observing (netral). Stance classification pada penelitian ini menggunakan data sebanyak 3.941 headline berita yang terdiri dari 563 klaim dengan 7 tanggapan. Dataset dikumpulkan dari artikel-artikel berita kesehatan berbahasa Indonesia yang diposting pada laman Facebook. Model pada penelitian ini mampu menghasilkan akurasi F1-score paling tinggi sebesar 64% dengan FastText embedding. Metode GRU dapat menjadi salah satu pilihan tepat untuk melakukan stance classification dengan komputasinya yang lebih sederhana. Kinerja FastText jauh lebih unggul dibandingkan dengan Word2Vec dalam melakukan pembentukan vektor kata karena mampu mengatasi masalah out-of-vocabulary (OOV).
Deteksi Pemakaian Helm Proyek Dengan Metode Convolutional Neural Network Bambang Widodo; Hendrawan Armanto; Endang Setyati
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.157

Abstract

Penggunaan helm proyek pada pekerjaan dengan resiko kecelakaan tinggi seperti pekerjaan konstruksi seringkali diabaikan oleh pekerja, sehingga apabila terjadi kecelakaan kerja yang tidak diinginkan seperti kejatuhan benda keras dari atas atau terjadi benturan keras pada kepala akan berakibat fatal bagi pekerja tersebut. Penelitian ini bertujuan untuk mendeteksi pemakaian helm proyek oleh pekerja konstruksi pada citra. Metode yang digunakan pada penelitian ini adalah Convolutional Neural Network YOLO. Sistem terdiri dari tiga proses utama yaitu proses pre processing, proses training dan proses deteksi. Proses pre processing adalah melakukan resize dan anotasi labeling pada citra dataset. Selanjutnya adalah proses training pada dataset dengan menggunakan transfer learning YOLOv2. Pada proses deteksi digunakan 4 buah anchor box pada setiap grid pada citra, hasil dari mencari nilai ukuran bounding box yang memiliki IOU terbaik dengan melakukan proses clustering pada dataset training dan validasi yang terdapat bounding box menggunakan algoritma K-Mean clustering. Algoritma Intersection Over Union (IOU) dan Non Max Suppression (NMS) digunakan agar bounding box prediksi yang dibuat presisi dengan objek yang berhasil dideteksi dan untuk menghilangkan multideteksi pada objek yang sama. Proses deteksi pada sistem ini melakukan lokalisasi dan klasifikasi dengan sekali langkah proses sehingga hasil dari proses deteksi ini adalah orang menggunakan helm proyek dan orang tidak menggunakan helm proyek. Pengujian sistem deteksi dilakukan secara individu maupun kelompok maksimal 5 orang dengan F1-score yang diperoleh sebesar 0,79.
Deteksi Citra Pornografi Memanfaatkan Deep Convolutional Neural Network Kevin Setiono; Yosi Kristian; Gunawan Gunawan
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.172

Abstract

Internet merupakan salah satu sumber informasi yang sangat mudah diakses dan sangat lengkap pada zaman sekarang ini. Dari banyaknya konten tersebut terdapat konten pornografi yang meresahkan dan memberikan dampak buruk pada perkembangan anak-anak. Hingga tahun 2020 pemblokiran konten pornografi menyumbang 70 persen dibandingkan konten negative lainnya. Metode untuk mencegah/memblokir konten pornografi ada berbagai macam mulai dari memblokir websitenya hingga mendeteksi berdasarkan citra yang ada. Penelitian ini akan mencoba mendeteksi citra pornografi dengan bantuan Deep Convolutional Neural Network. Pembuatan model menggunakan transfer learning hingga fine tuned fine transfer learning dan mencoba model-model state of the art. Penelitian ini menghasilkan model yang mampu mendeteksi citra pornografi dengan akurasi 78%. Selain memiliki akurasi yang cukup tinggi model ini juga mampu mendeteksi bagian-bagian intim dari wanita yang menjadi fitur dari citra pornografi. Kemampuan mendeteksi fitur tersebut telah diujicoba dengan mengubah model yang digunakan penelitian ini sebagai detektor objek pada citra pornografi.
Disjoint Community Detection pada Network Kegiatan Kemahasiswaan di ISTTS Menggunakan Fast Greedy dan Walktrap Mikhael Setiawan; Gunawan; F.X.Ferdinandus
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.175

Abstract

Disjoint community detection bertujuan untuk menemukan sebuah komunitas pada network dengan melakukan pemisahan. Pada penelitian ini, disjoint akan dilakukan pada network kegiatan kemahasiswaan di ISTTS. Metode disjoint community detection yang digunakan adalah fast greedy dan walktrap algorithm.  Data kegiatan kemahasiswaan berisi mengenai mahasiswa bersama-sama dengan mahasiswa lainnya mengikuti kegiatan kemahasiswaan apa saja. Setelah disjoint berhasil dilakukan, maka akan dihitung nilai closeness centrality dari setiap mahasiswa, dimana pada akhirnya akan dihitung correlation coefficient dengan IPK mahasiswa tersebut untuk mencari hubungan antara centrality mahasiswa dengan IPK mereka. Hasil closeness centrality ini selanjutnya di rata-rata untuk semua hasil algoritma untuk melihat bagaimana korelasi closeness centrality dengan ipk mahasiswa tersebut. Uji coba dilakukan dengan membentuk gml dari kombinasi filter, yang menghasilkan sekitar 2527 gml dengan nilai akhir korelasi adalah 62 - 63% weak positif dengan diikuti 16-18% moderate positif, dan 14-16% tidak berkorelasi sama sekali. Akhirnya dapat disimpulkan bahwa closeness centrality dalam sebuah komunitasnya, hanya berpengaruh secara weak positif dengan ipk mahasiswa tersebut.
DETEKSI POLISI TIDUR PADA JALAN MENGGUNAKAN ANILISIS BLOB DAN KONVOLUSIONAL NEURAL NETWORK Ervin Indra Nugraha; Yuliana Melita Pranoto
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.180

Abstract

Polisi tidur merupakan pembatas kecepatan laju dari kendaraan yang sengaja ditempatkan diatas jalan. Polisi tidur memiliki dua jenis karakteristi. Polisi tidur memiliki ukuran berbeda yang ditemui pada beberapa perumahan, ditempat ujian sim, dan yang sering dijumpai pada perumahan atau jalan dengan beragam warna yang berbeda. Deteksi polisi tidur pada jalan akan menggunakan dua metode Anilisis blob dan CNN. Proses deteksi polisi tidur akan dilakukan menggunakan anilisis blob, saat metode anilisis blob tidak mendeteksi adanya polisi tidur maka akan dilakukan proses CNN untuk melakukan deteksi. Dalam proses anilisis blob, alur penelitian deteksi akan dilakukan menggunakan anilisis blob, pada saat proses blob tidak mendeteksi adanya polisi tidur maka proses deteksi akan dilanjutkan menggunakan CNN. Sebelum dilakukan proses deteksi menggunakan blob, gambar atau video frame akan diproses menggunakan proses preprosesing, morfologi erosi dan dilasi. Penggunaan proses preprosesing dan morfologi dilakukan agar objek berupa polisi tidur dapat dipisahkan dari gambar background yaitu aspal. Uji coba pada penelitian akan dilakukan pada 10 buah video dengan durasi minimal 30 detik dan 100 gambar polisi tidur yang diproses pada dataset. Pada dataset akan dikelompokan untuk dilakukan klasifikasi yaitu berwarna dan tidak berwarna. Setiap warna polisi tidur yang terdeteksi akan dicatat dan berapa banyak pada warna tersebut polisi tidur dapat dideteksi. Kedua metode yang digabungkan mendapatkan hasil deteksi yang baik dengan hasil  76% terhadap polisi tidur pada perumahan. Pada uji coba rata-rata polisi tidur tanpa warna atau warna yang sama dengan aspal dan penggunaan paving pada jalan mempengaruhi tingkat akurasi dari deteksi polisi tidur.
Ekstraksi Ulasan Sentimen Film dari Twitter dengan Naïve Bayes pada Situs Web Media Sosial Penggemar Film Adri Gabriel Sooai; Melania Laniwati
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.186

Abstract

Film dianggap sebagai bentuk seni serta merupakan sumber hiburan yang populer. Pembuatan penelitian ini diharapkan bisa membantu orang Indonesia untuk mendapatkan informasi tentang film serta membaca review dari film. Review film yang ada pada website ini didapatkan dari user-user lokal maupun dari Twitter. Sistem mengekstraksi dan mengkategorikan isi sentiment dari sebuah barisan teks tweet dengan menggunakan metodologi Basic Unified Process. Proses klasifikasi sentiment yang ada bertujuan untuk mengklasifikasi review sebagai positif/negatif. Seluruh tweet akan diproses melalui Feature Reduction dan Normalisasi. Proses Feature Reduction akan menghapus hashtag, username, link, dan tanda baca pada tweets. Pada proses Normalisasi, seluruh singkatan dan kata bukan baku pada tweets akan diganti. Penelitian ini menggunakan sistem Rule-Based dalam menentukan apakah tweet tersebut merupakan review film atau bukan. Penulis menggunakan algoritma Naïve Bayes untuk mengklasifikasi sentiment (positif/negatif) dari review. Penulis telah melakukan 8 buah pengujian, masing-masing 4 kali untuk pengujian sistem Rule-Based dan Naïve Bayes Classifier. Total data tweet yang diujicobakan adalah sebanyak 6.323, dan hasil akhir paling optimal yang didapatkan oleh sistem terhadap Rule-Based System menghasilkan akurasi sebesar 82,64% dan terhadap Naïve Bayes Classifier sebesar 74,09%. Dari hasil pengujian paling optimal ini, sistem mendapatkan nilai recall dan presisi masing-masing sebesar 71,44% dan 77,92% untuk Rule-Based System, serta 83,77% dan 77,65% untuk Naïve Bayes.
Pengukuran Material Pada Bak Truk Berbasis Citra Reddy Alexandro Harianto
Intelligent System and Computation Vol 3 No 1 (2021): INSYST: Journal of Intelligent System and Computation
Publisher : Institut Sains dan Teknologi Terpadu Surabaya (d/h Sekolah Tinggi Teknik Surabaya)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52985/insyst.v3i1.187

Abstract

Proses pengukuran Material bak Truk membutuhkan waktu yang lama jika dilakukan dengan manual. Pengukuran Material Pada Bak Truk Berbasis Citra adalah sebuah terobosan untuk mengukur volume material secara otomatis menggunakan stereo image dengan durasi yang cepat. ZED Stereo Camera digunakan untuk scanning bak truk dan NVIDIA Jetson TX 1 digunakan menghitung muatannya. Pada tahap scanning dilakukan berbagai proses pengolahan citra seperti grayscaling, blurring, thresholding otsu, morphology operation dengan tujuan mengambil nilai depth bak truk dan mencari jarak maksimum serta minimum pada depth bak truk. Proses scanning dilakukan 2 kali yaitu pada saat truck kosong dan truk yang terdapat muatan. Setelah kedua data scanning terpenuhi dilakukan tahap perhitungan material dengan mengolah depth value, sebelumnya depth value dilakukan normalisasi terlebih dahulu. Setelah nilai depth didapatkan dilakukan rumus perhitungan volume pada bak yang berisi, dan juga di lakukan perhitungan volume bak kosong. Selisih dari nilai bak kosong di bandingkan dengan nilai bak isi inilah yang disebut sebagai volume muatan bak truk. Uji coba dilakukan pada jam 07.00-17.30 dengan truk yang berbeda. Terdapat 147 data percobaan terdapat 31 data yang tidak dapat ditemukan nilai depth value nya di karenakan pencahayaan yang kurang baik pada proses scanning. Dari scanning yang berhasil diprediksi nilai volume nya dan dibandingkan dengan nilai volume dengan metode perhitungan manual RMSE perhitungannya pada angka 0.814.

Page 1 of 1 | Total Record : 7