cover
Contact Name
Muji Setiyo
Contact Email
muji@unimma.ac.id
Phone
+6282330623257
Journal Mail Official
autoexp@unimma.ac.id
Editorial Address
Universitas Muhammadiyah Magelang, Jl. Bambang Soegeng KM. 4 Mertoyudan Magelang, Telp/Faks : (0293) 326945
Location
Kab. magelang,
Jawa tengah
INDONESIA
Automotive Experiences
ISSN : 26156202     EISSN : 26156636     DOI : 10.31603/ae
Automotive experiences invite researchers to contribute ideas on the main scope of Emerging automotive technology and environmental issues; Efficiency (fuel, thermal and mechanical); Vehicle safety and driving comfort; Automotive industry and supporting materials; Vehicle maintenance and technical skills; and Transportation policies, systems, and road users behavior.
Articles 134 Documents
Development of Test Cycle for Centrifugal Clutch of CVT Driven Scooters Intended for Urban Traffic Conditions Dhruv U. Panchal; Bhavesh K. Patel
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6604

Abstract

The present study deals with the development of a test cycle for the centrifugal clutch of continuously variable transmission (CVT) driven scooters. Centrifugal clutch experiences different duty cycles during the usage of scooters in city traffic and highways during its lifetime. Since the friction characteristics of the centrifugal clutch are controlled by acquired factors, it is difficult to predict ideal friction characteristics under all conditions. The wear of friction lining increases due to heat generated in the clutch assembly because of the repeated “stick-slip” phenomena. Therefore, an attempt has been made for developing à new test cycle by keeping the engagement frequency as a reference. Road load data for three different riding conditions have been collected and analyzed. The developed test cycle has been automated on the centrifugal clutch test bench and a new set of clutch liners was tested thoroughly. The surface roughness, thickness, and wear of clutch liners have been observed and evaluated against the field vehicles. For the surface roughness, maximum deviations of 3.74%, 3.36%, and 2.16% have been observed for trailing, middle and leading sections of clutch liners respectively. For the thickness, maximum deviations of 3.06%, 2.59%, and 3.14% have been observed for trailing, middle and leading sections of clutch liners respectively. The developed test cycle demonstrates a good correlation with field use.
Selectivity of the New Catalyst ZnO-MCM-48-CaO in Esterification of Calophyllum inophyllum Oil La Kolo; Firdaus Firdaus; Paulina Taba; Muhammad Zakir; Nunuk Hariani Soekamto
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6711

Abstract

The synthesis of MCM-48 containing surfactants (CTAB and Triton X-100), ZnO, and CaO aimed to find a potential heterogeneous catalyst in the esterification of Calophyllum inophyllum oil to biodiesel. This research is important in the production of biodiesel from vegetable oils with more than 2% free fatty acids (FFA), such as Calophyllum inophyllum oil using heterogeneous catalysts. Synthesis of heterogeneous catalysts, MCM-48 and ZnO-MCM-48-CaO (ZMC), using the hydrothermal method at various calcination temperatures was conducted to find the optimum calcination temperature for the reaction. The activity of the catalyst in the reaction was determined using acid-base titration methods and GC-MS. The MCM-48 catalyst calcined at 650 °C (MCM-48/650) had a catalytic activity of 35.74% and was selective for converting linoleic acid in Calophyllum inophyllum oil to biodiesel. In addition, this catalyst was also capable of cracking the compounds contained in Calophyllum inophyllum oil into suitable hydrocarbons for biodiesel. In the esterification of vegetable oils, four heterogeneous catalysts (MCM-48/550, ZMC/550, ZMC/650, and ZMC/750) had the potential to replace conventional catalysts (H2SO4), particularly in the generation of biodiesel from Calophyllum inophyllum oil.
The Effect of Ethanol on Brake Torque, Brake Specific Fuel Consumption, Smoke Opacity, and Exhaust Gas Temperature of Diesel Engine 4JB1 Fueled by Diesel-Jatropha Oil Syarifudin Syarifudin; Faqih Fatkhurrozak; Firman Lukman Sanjaya; Eflita Yohana; Syaiful Syaiful; Agus Wibowo
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6447

Abstract

The growth of diesel vehicles has consequences for the consumption of diesel oil. Therefore, using Jatropha as an alternative fuel reduces dependence on diesel oil and it does not interfere with food availability. However, the high viscosity of jatropha oil makes the fuel pump work harder. In addition, the low calorific value reduces the quality of the fuel which creates unique problems. Ethanol, with its low viscosity and high oxygen content, is expected to be effective in reducing jatropha problems for diesel engines. Therefore, this study aims to evaluate the addition of ethanol to the brake torque, brake-specific fuel consumption, exhaust gas temperature, and smoke opacity. The 4JB1 diesel engine with an EGR was tested on a 10% (DJ10) and 20% (DJ20) diesel-jatropha mixture. The experimental results showed that brake torque increased by 1.51% in the DJ10 application, brake specific fuel consumption decreased by 7.05%, exhaust gas temperature decreased by 0.67%, and smoke opacity increased by 25.91%. While in the DJ20 application, brake torque increased by 3.19%, brake-specific fuel consumption decreased by 30.08%, exhaust gas temperature decreased by 0.67%, and smoke opacity increased by 69.03%.
Analysis of User’s Comfort on Automated Vehicle Riding Simulation using Subjective and Objective Measurements Muhammad Nur Aliff Mohd Norzam; Juffrizal Karjanto; Nidzamuddin Md. Yusof; Muhammad Zahir Hassan; Abd Fathul Hakim Zulkifli; Ahmad Azad Ab Rashid
Automotive Experiences Vol 5 No 2 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6913

Abstract

The naturalistic study investigated the potential influence of personal driving preferences (assertive and defensive driving style) on users; comfort when being driven in an automated vehicle with a defensive driving style. Adopted the Wizard of Oz design, the study involved three phases: pre-, during, and post-driven to measure their comfort, perceived safety, and likeness as well as motion sickness propensity through self-report questionnaire and heart rate variation. After answering a set of questionnaires, participants were exposed to simulated driving in an automated vehicle with a defensive driving style. A statistical analysis produced no statistically significant difference between assertive and defensive participants. This indicates an overall preference, perceived comfort without severe motion sickness propensity to the defensive driving style of the autonomous vehicle, regardless of participants’ personal driving styles.
An Experimental Study of the TEG Performance using Cooling Systems of Waterblock and Heatsink-Fan Nugroho Tri Atmoko; Agus Jamaldi; Tri Widodo Besar Riyadi
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6250

Abstract

Two third of the total energy in the internal combustion engine (ICE) system is lost and turns as waste heat through the exhaust system and coolant circulations. Therefore, it is necessary to have a technology that is able to convert waste heat from ICE into electrical energy using thermal electric generator (TEG). To have the best thermoelectric generator (TEG) performance in terms of higher electricity generation, the temperature on the hot surface should be higher, and the temperature on the cold surface should be as low as feasible. The goal of the study was to study how differences in TEG cooling systems affected the overall performance. Water block and heatsink-fan are two different types of cooling systems that have been used in this experiment. The water flow rate in water block cooling systems varies between 200, 300, 400, 500, and 600 l/h. The TEG module was heated with gas-fired lighters. Arduino-based data loggers were used to record hot and cold temperatures on the TEG surface. A USB multimeter is used to measure TEG performance as electrical voltage. The results showed that 300 l/h was the best water flow rate for TEG cooling. When using a water block cooling system instead of a heat sink, the electrical voltage generated by the TEG module is 12 percent higher. This study found that a cooling system with water blocks is superior to heatsink-fan.
Acetone-Butanol-Ethanol as the Next Green Biofuel - A Review Sri Mumpuni Ngesti Rahaju; Ibham Veza; Noreffendy Tamaldin; Ahmed Sule; Anthony C. Opia; Mohammed Bashir Abdulrahman; Djati Wibowo Djamari
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6335

Abstract

The development of diesel engines faces challenging targets to satisfy stringent emissions regulation. To address this issue, the use of alcohol biofuels such as methanol and ethanol has attracted numerous attention due to their physicochemical properties and the possibility to be produced from renewable sources and agricultural waste material. Compared to ethanol, longer carbon alcohol such as butanol has higher energy density and lower latent heat, hygroscopicity, aggressivity, and toxicity. It can also be produced from biomass. Yet, despite its noticeable advantages, the use of butanol in the internal combustion engine is hindered by its low production efficiency. If Acetone-Butanol-Ethanol (ABE) is further distilled and purified, pure butanol and ethanol can be acquired, but this involves an energy-intensive process, thus increasing the production cost of butanol. To solve this problem, the direct use of ABE as a biofuel is considered a promising strategy. The idea of using ABE directly in internal combustion engines is then proposed to solve the economic issue of high butanol production costs. A scoping literature review was performed to screen and filter previously published papers on ABE by identifying knowledge gaps instead of discussing what is already known. Therefore, repeated and almost identical studies were eliminated, thus reporting only the most significant and impactful published papers. In terms of the objective, this article aims to review the progress of ABE as a promising biofuel in regard to the engine performance, combustion, and emission characteristics. Focus is also given to ABE’s physicochemical properties. Despite their considerable importance, the fuel properties of ABE are rarely discussed. Therefore, this review article intends to analytically discuss the physicochemical properties of ABE in terms of their calorific value, density, kinematic viscosity, and distillation. In general, it is concluded that engine emissions such as NOx and Particulate Matter (PM) could be reduced considerably with the use of ABE. Yet, the BSFC was found to increase due to the relatively lower calorific value and density of ABE blends as opposed to gasoline or diesel fuel, thereby increasing its fuel consumption. In terms of ABE’s fuel properties, in general, ABE can be used due to its satisfying physicochemical properties. However, it should be noted that the ABE-gasoline/diesel blends are greatly influenced by each of its component ratios (acetone, butanol, ethanol).
Resin Matrix Composition on the Performance of Brake Pads Made from Durian Seeds: From Computational Bibliometric Literature Analysis to Experiment Asep Bayu Dani Nandiyanto; Dwi Novia Al Husaeni; Risti Ragadhita; Meli Fiandini; Dwi Fitria Al Husaeni; Muhammad Aziz
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6852

Abstract

The purpose of this study was to analyze the effect of a resin composition on the performance of brake pads with durian seeds (BDs) as the base material. Experiments were done by attaching saw-milled BD particles to a polymer matrix. Various resin compositions were used for preparing the brake pad, which was then tested (press test, puncture test, and friction test). Physical properties (i.e., particle size, surface roughness, morphology, and density), as well as mechanical properties (ie: hardness, wear rate, and friction coefficient properties), were investigated. Based on observations, the best mechanical properties were found in the highest resin mixture, reaching a compressive strength value of 2.4 MPa. The impact of the homogeneity of the brake pad filler particles is the main reason. The high resin composition causes more cross-links to be formed. This research demonstrates the prospective environmentally friendly and inexpensive brake pads used to replace current products that use hazardous materials.
Comprehensive Review of Nanoparticles Dispersion Technology for Automotive Surfaces Sharifah Norsakinah Syed Zainal Abidin; Wan Hamzah Azmi; Nurul Nadia Mohd Zawawi; Anwar Ilmar Ramadhan
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.6882

Abstract

Many innovations arose from the continual and thorough monitoring of overlooked characteristics of materials found in the environment. Automotive paints are always constantly exposed to a broad range of ambient temperature conditions, which reduces their longevity and encourages algae development. Through the effective incorporation of nanotechnology with this lotus effect, it has become possible to provide self-cleaning ability along with air purification and antibacterial performance to automotive surfaces like paint and coating. The addition of nanoparticles such as Titanium dioxide (TiO2) and Silicon dioxide (SiO2) helps to improve functionalities like water or stain resistance, ultra-violet protection, and scratch resistance. When the nanoparticles were added into paint, they degraded the polluting compounds on the material's surface by photo catalysis. Multiple photocatalytic functions and self-cleaning properties were observed in nanoparticles added to polyester acrylic paint. Therefore, this paper discussed the history of automotive painting, nanopaint technology, previous research on the method preparation, development, and current progress, the environmental health aspects of nanotechnology, as well as the performance in terms of automotive surfaces. The study discovered the requirements for nanoparticle dispersion and coating uniformity and appearance on automotive surfaces, which will serve as a benchmark for dispersion and coating methods for automotive surfaces.
The Effects of Canola Oil/Diesel Fuel/Ethanol/N-Butanol/Butyl Di Glycol Fuel Mixtures on Combustion, Exhaust Gas Emissions and Exergy Analysis Salih Ozer; Mehmet Akçay; Battal Doğan; Derviş Erol; Muji Setiyo
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7000

Abstract

In recent years, there have been many studies on the widespread use of liquid fuels derived from biomass. A common emphasis in such studies is on fewer exhaust gas emissions and the expansion of renewable fuel production. Biodiesel is considered to be an important type of biomass fuel that is already produced commercially. But the production of biodiesel is laborious and comprises combination of several chemical processes. This study examines the effects of using oil used in biodiesel production with oxygen-rich chemicals on combustion (in-cylinder pressure (Cp), heat release rate (HRR), rate of pressure rise (RoPR), and cumulative heat release (CHR)), exhaust emission values, energy and exergy analysis. In this study, the effects of butyl di glycol use were also investigated and compared with commercially used ethanol and n-butanol. A transesterification method produced from canola oil the biodiesel used in the experiments. The experimental fuels were mixed volumetrically. For this purpose, experiments were carried out with canola biodiesel produced at 20% (D80B20) in diesel fuel and the results of the experiments were recorded. Under the same conditions, experiments were carried out by adding ethanol (D60C20E20), n-butanol (D60C20B20), butyl di glycol (D60C20G20) at a rate of 20% by volume to the canola oil added to the diesel fuel. The lowest values in terms of thermal and exergy efficiency were obtained in D60C20G20 fuel at all engine loads. Also, the highest entropy generation was calculated at all engine loads for this fuel blend.
Multi-objective Optimization of Sansevieria Trifasciata Fiber Reinforced Vinyl Ester (STF/VE) Bio-composites for the Sustainable Automotive Industry Apang Djafar Shieddieque; Mardiyati Mardiyati; Sukarman Sukarman; Bambang Widyanto; Yulfian Aminanda
Automotive Experiences Vol 5 No 3 (2022)
Publisher : Automotive Laboratory of Universitas Muhammadiyah Magelang in collaboration with Association of Indonesian Vocational Educators (AIVE)

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31603/ae.7002

Abstract

Bio-composite materials have taken an extensive interest in research over the years due to their excellent properties, such as excellent mechanical and physical properties, stiffness, and low density/lightweight. The exceptional properties of bio-composite materials have had a widespread application in several industries, such as; the packaging industry, construction, automotive, and other related engineering fields. This research investigates mechanical, physical, and microstructure properties of Sansevieria Trifasciata (STE) natural fiber, -reinforced Vinyl Ester (STF/VE) bio-composite. The mechanical and physical properties of STF/VE bio-composites, including the tensile strength and density, are investigated through fibre preparation, orientation, and fibre volume fraction parameters. The STF/VE bio-composite tensile strength coupon is manufactured using the bio-composite transfer moulding (BTM) process and with pressure moulding. The Taguchi experimental design and analysis of variance (ANOVA) are selected to investigate the effect of variables on the mechanical properties model. The alkali preparation of STF, unidirectional fibre orientation, and fibre volume fraction improve tensile strength. Non-alkali treatment and random fibre orientatio, on the other hand, result in a reduction of density. The results of the ANOVA analysis show that the fibre volume fraction (wt.%) is the variable that most significantly affects the tensile strength and density responses, with contributions of 50.57% of tensile strength and 51.34% of density, respectively. Based on the optimization results, the STF/VE with alkali treatment, unidirectional, and 15 w.t.% is chosen as the best bio-composite formulation, with the best tensile strength-density balance. It indicates that the optimum parameter was successfully achieved among the samples examined in this work.

Page 9 of 14 | Total Record : 134