cover
Contact Name
De Rosal Ignatius Moses Setiad
Contact Email
moses@dsn.dinus.ac.id
Phone
-
Journal Mail Official
editorial@faith.futuretechsci.org
Editorial Address
Kaba Dalam II street, Semarang, Central Java 50274, Indonesia
Location
Kota semarang,
Jawa tengah
INDONESIA
Journal of Future Artificial Intelligence and Technologies
Published by Future Techno Science
ISSN : -     EISSN : 30483719     DOI : 10.62411/faith
Core Subject : Science,
Journal of Future Artificial Intelligence and Technologies E-ISSN: 3048-3719 is an international journal that delves into the comprehensive spectrum of artificial intelligence, focusing on its foundations, advanced theories, and applications. All accepted articles will be published online, receive a DOI from CROSSREF, and will be OPEN ACCESS. The RAPID peer-reviewed process is designed to provide the first decision within approximately two weeks. The journal publishes papers in areas including, but not limited to: Machine Learning, Deep Learning, Computer Vision, Natural Language Processing, Quantum Computing in AI, AI in Image Processing, AI in Security, AI in Signal Processing, and Various other AI Applications Special emphasis is given to recent trends related to cutting-edge research within the domain. If you want to become an author(s) in this journal, you can start by accessing the About page. You can first read the Policies section to find out the policies determined by the FAITH. Then, if you submit an article, you can see the guidelines in the Author Guidelines section. Each journal submission will be made online and requires prospective authors to register and have an account to be able to submit manuscripts.
Articles 14 Documents
Analyzing Preprocessing Impact on Machine Learning Classifiers for Cryotherapy and Immunotherapy Dataset De Rosal Ignatius Moses Setiadi; Hussain Md Mehedul Islam; Gustina Alfa Trisnapradika; Wise Herowati
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 1 (2024): June 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-2

Abstract

In the clinical treatment of skin diseases and cancer, cryotherapy and immunotherapy offer effective and minimally invasive alternatives. However, the complexity of patient response demands more sophisticated analytical strategies for accurate outcome prediction. This research focuses on analyzing the effect of preprocessing in various machine learning models on the prediction performance of cryotherapy and immunotherapy. The preprocessing techniques analyzed are advanced feature engineering and Synthetic Minority Over-sampling Technique (SMOTE) and Tomek links as resampling techniques and their combination. Various classifiers, including support vector machine (SVM), Naive Bayes (NB), Decision Tree (DT), Random Forest (RF), XGBoost, and Bidirectional Gated Recurrent Unit (BiGRU), were tested. The findings of this study show that preprocessing methods can significantly improve model performance, especially in the XGBoost model. Random Forest also gets the same results as XGBoost, but it can also work better without significant preprocessing. The best results were 0.8889, 0.8889, 0.6000, 0.9037, and 0.8790, respectively, for accuracy, recall, specificity, precision, and f1 on the Immunotherapy dataset, while on the Cryotherapy dataset, respectively, they were 0.8889, 0.8889, 0.6000, 0.9037, and 0.8790. This study confirms the potential of customized preprocessing and machine learning models to provide deep insights into treatment dynamics, ultimately improving the quality of diagnosis.
Comprehensive Exploration of Machine and Deep Learning Classification Methods for Aspect-Based Sentiment Analysis with Latent Dirichlet Allocation Topic Modeling De Rosal Ignatius Moses Setiadi; Dhendra Marutho; Noor Ageng Setiyanto
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 1 (2024): June 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-3

Abstract

This research explores the effectiveness of machine learning (ML) and deep learning (DL) classification methods in Aspect-Based Sentiment Analysis (ABSA) on product reviews, incorporating Latent Dirichlet Allocation (LDA) for topic modeling. Using the Amazon reviews dataset, this research tests models such as Naive Bayes (NB), Support Vector Machines (SVM), Random Forest (RF), Long Short-Term Memory (LSTM), and Gated Recurrent Units(GRU). Important aspects such as the product's quality, practicality, and reliability are discussed. The results show that the RF and DL models provide competitive performance, with the RF achieving an accuracy of up to 94.50% and an F1 score of 95.45% for the reliability aspect. The study's conclusions emphasize the importance of selecting an appropriate model based on specifications and data requirements for ABSA, as well as recognizing the need to strike a balance between accuracy and computational efficiency.
Analyzing InceptionV3 and InceptionResNetV2 with Data Augmentation for Rice Leaf Disease Classification Fadel Muhamad Firnando; De Rosal Ignatius Moses Setiadi; Ahmad Rofiqul Muslikh; Syahroni Wahyu Iriananda
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 1 (2024): June 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-4

Abstract

This research aims to evaluate and compare the performance of several deep learning architectures, especially InceptionV3 and InceptionResNetV2, with other models, such as EfficientNetB3, ResNet50, and VGG19, in classifying rice leaf diseases. In addition, this research also evaluates the impact of using data augmentation on model performance. Three different datasets were used in this experiment, varying the number of images and class distribution. The results show that InceptionV3 and InceptionResNetV2 consistently perform excellently and accurately on most datasets. Data augmentation has varying effects, providing slight advantages on datasets with lower variation. The findings from this research are that the InceptionV3 model is the best model for classifying rice diseases based on leaf images. The InceptionV3 model produces accuracies of 99.53, 58.94, and 90.00 for datasets 1, 2, and 3, respectively. It is also necessary to be wise in carrying out data augmentation by considering the dataset's characteristics to ensure the resulting model can generalize well.
Segmentation Performance Analysis of Transfer Learning Models on X-Ray Pneumonia Images Kyi Pyar
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 1 (2024): June 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-10

Abstract

Segmentation of pneumonia areas on chest X-rays is essential to improve the accuracy of recognition tasks and subsequent diagnosis. The capabilities of deep learning techniques, U-Net, SegNet, and DeepLabV3, are assessed to achieve these purposes. Using transfer learning, these models were adapted to pneumonia-specific datasets. The evaluation focuses on Intersection over Union (IoU) and accuracy metrics. Results show that DeepLabV3 outperforms U-Net and SegNet, achieving 84.4% accuracy and 81% IoU. U-Net achieves 80.3% accuracy and 68% IoU, while SegNet achieves 81.0% accuracy and 70% IoU. These findings highlight the potential of transfer learning models to automate the segmentation of pneumonia-affected regions, thereby facilitating timely and accurate medical intervention.
Integrating SMOTE-Tomek and Fusion Learning with XGBoost Meta-Learner for Robust Diabetes Recognition De Rosal Ignatius Moses Setiadi; Kristiawan Nugroho; Ahmad Rofiqul Muslikh; Syahroni Wahyu Iriananda; Arnold Adimabua Ojugo
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 1 (2024): June 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-11

Abstract

This research aims to develop a robust diabetes classification method by integrating the Synthetic Minority Over-sampling Technique (SMOTE)-Tomek technique for data balancing and using a machine learning ensemble led by eXtreme Gradient Boosting (XGB) as a meta-learner. We propose an ensemble model that combines deep learning techniques such as Bidirectional Long Short-Term Memory (BiLSTM) and Bidirectional Gated Recurrent Units (BiGRU) with XGB classifier as the base learner. The data used included the Pima Indians Diabetes and Iraqi Society Diabetes datasets, which were processed by missing value handling, duplication, normalization, and the application of SMOTE-Tomek to resolve data imbalances. XGB, as a meta-learner, successfully improves the model's predictive ability by reducing bias and variance, resulting in more accurate and robust classification. The proposed ensemble model achieves perfect accuracy, precision, recall, specificity, and F1 score of 100% on all tested datasets. This method shows that combining ensemble learning techniques with a rigorous preprocessing approach can significantly improve diabetes classification performance.
Analyzing Quantum Feature Engineering and Balancing Strategies Effect on Liver Disease Classification Achmad Nuruddin Safriandono; De Rosal Ignatius Moses Setiadi; Akhmad Dahlan; Farah Zakiyah Rahmanti; Iwan Setiawan Wibisono; Arnold Adimabua Ojugo
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 1 (2024): June 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-12

Abstract

This research aims to improve the accuracy of liver disease classification using Quantum Feature Engineering (QFE) and the Synthetic Minority Over-sampling Tech-nique and Tomek Links (SMOTE-Tomek) data balancing technique. Four machine learning models were compared in this research, namely eXtreme Gradient Boosting (XGB), Random Forest (RF), Support Vector Machine (SVM), and Logistic Regression (LR) on the Indian Liver Patient Dataset (ILPD) dataset. QFE is applied to capture correlations and complex patterns in the data, while SMOTE-Tomek is used to address data imbalances. The results showed that QFE significantly improved LR performance in terms of recall and specificity up to 99%, which is very important in medical diagnosis. The combination of QFE and SMOTE-Tomek gives the best results for the XGB method with an accuracy of 81%, recall of 90%, and f1-score of 83%. This study concludes that the use of QFE and data balancing techniques can improve liver disease classification performance in general.
Pilot Study on Enhanced Detection of Cues over Malicious Sites Using Data Balancing on the Random Forest Ensemble Margaret Dumebi Okpor; Fidelis Obukohwo Aghware; Maureen Ifeanyi Akazue; Andrew Okonji Eboka; Rita Erhovwo Ako; Arnold Adimabua Ojugo; Christopher Chukwufunaya Odiakaose; Amaka Patience Binitie; Victor Ochuko Geteloma; Patrick Ogholuwarami Ejeh
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 2 (2024): September 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-14

Abstract

The digital revolution frontiers have rippled across society today – with various web content shared online for users as they seek to promote monetization and asset exchange, with clients constantly seeking improved alternatives at lowered costs to meet their value demands. From item upgrades to their replacement, businesses are poised with retention strategies to help curb the challenge of customer attrition. The birth of smartphones has proliferated feats such as mobility, ease of accessibility, and portability – which, in turn, have continued to ease their rise in adoption, exposing user device vulnerability as they are quite susceptible to phishing. With users classified as more susceptible than others due to online presence and personality traits, studies have sought to reveal lures/cues as exploited by adversaries to enhance phishing success and classify web content as genuine and malicious. Our study explores the tree-based Random Forest to effectively identify phishing cues via sentiment analysis on phishing website datasets as scrapped from user accounts on social network sites. The dataset is scrapped via Python Google Scrapper and divided into train/test subsets to effectively classify contents as genuine or malicious with data balancing and feature selection techniques. With Random Forest as the machine learning of choice, the result shows the ensemble yields a prediction accuracy of 97 percent with an F1-score of 98.19% that effectively correctly classified 2089 instances with 85 incorrectly classified instances for the test-dataset.
Phishing Website Detection Using Bidirectional Gated Recurrent Unit Model and Feature Selection De Rosal Ignatius Moses Setiadi; Suyud Widiono; Achmad Nuruddin Safriandono; Setyo Budi
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 2 (2024): September 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-15

Abstract

Phishing attacks continue to be a significant threat to internet users, necessitating the development of advanced detection systems. This study explores the efficacy of a Bidirectional Gated Recurrent Unit (BiGRU) model combined with feature selection techniques for detecting phishing websites. The dataset used for this research is sourced from the UCI Machine Learning Repository, specifically the Phishing Websites dataset. This approach involves cleaning and preprocessing the data, then normalizing features and employing feature selection to identify the most relevant attributes for classification. The BiGRU model, known for its ability to capture temporal dependencies in data, is then applied. To ensure robust evaluation, we utilized cross-validation, dividing the data into five folds. The experimental results are highly promising, demonstrating a Mean Accuracy, Mean Precision, Mean Recall, Mean F1 Score, and Mean AUC of 1.0. These results indicate the model's exceptional performance distinguishing between phishing and legitimate websites. This study highlights the potential of combining BiGRU models with feature selection and cross-validation to create highly accurate phishing detection systems, providing a reliable solution to enhance cybersecurity measures.
An Interpretable Machine Learning Strategy for Antimalarial Drug Discovery with LightGBM and SHAP Teuku Rizky Noviandy; Ghalieb Mutig Idroes; Irsan Hardi
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 2 (2024): September 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-16

Abstract

Malaria continues to pose a significant global health threat, and the emergence of drug-resistant malaria exacerbates the challenge, underscoring the urgent need for new antimalarial drugs. While several machine learning algorithms have been applied to quantitative structure-activity relationship (QSAR) modeling for antimalarial compounds, there remains a need for more interpretable models that can provide insights into the underlying mechanisms of drug action, facilitating the rational design of new compounds. This study develops a QSAR model using Light Gradient Boosting Machine (LightGBM). The model is integrated with SHapley Additive exPlanations (SHAP) to enhance interpretability. The LightGBM model demonstrated superior performance in predicting antimalarial activity, with an ac-curacy of 86%, precision of 85%, sensitivity of 81%, specificity of 89%, and an F1-score of 83%. SHAP analysis identified key molecular descriptors such as maxdO and GATS2m as significant contributors to antimalarial activity. The integration of LightGBM with SHAP not only enhances the predictive ac-curacy of the QSAR model but also provides valuable insights into the importance of features, aiding in the rational design of new antimalarial drugs. This approach bridges the gap between model accuracy and interpretability, offering a robust framework for efficient and effective drug discovery against drug-resistant malaria strains.
Optimizing Rice Production Forecasting Through Integrating Multiple Linear Regression with Recursive Feature Elimination Joseph Abunimye Ingio; Augustine Shey Nsang; Aamo Iorliam
Journal of Future Artificial Intelligence and Technologies Vol. 1 No. 2 (2024): September 2024
Publisher : Future Techno Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.62411/faith.2024-17

Abstract

Rice is a staple food for most Nigerians, making accurate yield prediction is crucial for food security. This study addresses the limitations of traditional forecasting methods by employing Multiple Linear Regression (MLR) coupled with Recursive Feature Elimination (RFE) to predict rice yield in Adamawa and Cross River states, characterized by distinct agroclimatic conditions. Utilizing climatic data and historical yield records from 1990 to 2022, we trained and evaluated MLR and compared the MLR results with two other machine learning models (XGBoost, and K Nearest Neighbours). RFE-optimized feature selection identified All-sky Photosynthetically Active Radiation (PAR) as a key factor. MLR demonstrated a very stable prediction performance with R² values of 0.90 and 0.92 for Adamawa and Cross River, respectively, after RFE. This research contributes to developing advanced Agro-information systems, supporting informed agricultural decision-making, and enhancing Nigeria's food security.

Page 1 of 2 | Total Record : 14