cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
jurtdm@batan.go.id
Editorial Address
Pusat Teknologi dan Keselamatan Reaktor Nukir (PTKRN) Badan Tenaga Nuklir Nasional (BATAN) Gedung 80 Kawasan Puspiptek Setu - Tangerang Selatan Banten - Indonesia (15310)
Location
Kota adm. jakarta selatan,
Dki jakarta
INDONESIA
Jurnal Teknologi Reaktor Nuklir Tri Dasa Mega
ISSN : 1411240X     EISSN : 25279963     DOI : -
Core Subject : Science,
Jurnal Teknologi Reaktor Nuklir "TRI DASA MEGA" adalah forum penulisan ilmiah tentang hasil kajian, penelitian dan pengembangan tentang reaktor nuklir pada umumnya, yang meliputi fisika reaktor, termohidrolika reaktor, teknologi reaktor, instrumentasi reaktor, operasi reaktor dan lain-lain yang menyangkut reaktor nukli. Frekuensi terbit tiga (3) kali setahun setiap bulan Februari, Juni dan Oktober.
Arjuna Subject : -
Articles 210 Documents
DESAIN KONSEP TANGKI PENAMPUNG BAHAN BAKAR PASSIVE COMPACT MOLTEN SALT REACTOR A. Hadiwinata; Andang Widiharto; Sihana Sihana
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 13, No 2 (2011): Juni 2011
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (359.439 KB)

Abstract

Passive Compact Molten Salt Reactor (PCMSR) merupakan pengembangan dari reaktor MSR. Desain reaktor PCMSR membutuhkan tempat khusus penampung sementara bahan bakar pada saat terjadi insiden, misalnya kecelakaan yang menyebabkan peningkatan suhu bahan bakar. Tangki penampung bahan bakar tersusun dari 3 bagian yang saling terhubung yaitu bagian penampung cairan bahan bakar, cerobong (chimney), dan penukar kalor. Dalam penelitian ini, tangki dimodelkan secara lump dan dilakukan variasi daya awal reaktor dan ketinggian cerobong. Syarat batas model ditetapkan suhu bahan bakar maksimum 1400 °C, yang didasarkan pada titik didih larutan garam LiF-BeF2-ThF4-UF4. Analisis dilakukan dengan cara menghitung rugi tekanan total dan transfer kalor untuk variasi daya awal antara 1800-3000 MWth dan ketinggian cerobong antara 1-10 m. Hasil penelitian menunjukan semakin besar daya reaktor, maka tinggi tangki penampung bahan bakar dan tinggi alat penukar kalor yang dibutuhkan akan semakin besar, tejadi kenaikan suhu fluida pendingin dan suhu udara pendingin, dan menyebabkan kenaikan laju aliran masa fluida pendingin, sedangkan laju aliran masa udara menurun. Peningkatan ketinggian cerobong menyebabkan ketinggian tangki penampung bahan bakar dan ketinggian alat penukar kalor semakin menurun, penurunan suhu fluida pendingin, tetapi suhu udara meningkat, dan menyebabkan peningkatan laju aliran masa fluida pendingin, tetapi laju aliran masa udara akan semakin menurun.Kata kunci: PCMSR, cerobong, alat penukar kalor, variasi daya. The Passsive Compact Molten Salat Reactor (PCMSR) reactor is developed from MSR reactor. The PCMSR reactor design requires special place to temporarily storage for reactor fuel when incident occurs, such as when there is an accident which caused the temperature of the fuel increases. The tank consist of three interconnected parts, the reservoir liquid fuel, chimney, and the heat exchanger. In this research, the tank system is modeled based on a lump model and with variation of the initial power and height of chimney. Model boundary conditions set at the maximum fuel temperature of 1400°C, which is based on the molten salt LiF-BeF2-ThF4-UF4. In this analysis, calculation of pressure drop and heat transfer are conducted for 1800-3000 MWth and for chimney height variations were analyzed at height of 1-10 m. Results show that the larger power in reactors, the fuel tank height and the height of heat exchanger equipment required will be greater, increasing cooling fluid temperature and air temperature, increasing cooling fluid mass flow rate while the air mass flow rate decreases. Increasing the height of chimney causes height of the fuel tank and the height of the required heat exchanger decreases, decreasing coolant fluid temperature, but the air temperature will increase, causing cooling fluid mass flow rate will increase but the air mass flow rate will decrease. Keywords: PCMSR, chimney, heat exchanger, power variation
FUEL BURN-UP DISTRIBUTION AND TRANSURANIC NUCLIDE CONTENTS PRODUCED AT THE FIRST CYCLE OPERATION OF AP1000 Jati Susilo; Jupiter Sitorus Pane
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 18, No 2 (2016): Juni 2016
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (754.171 KB) | DOI: 10.17146/tdm.2016.18.2.2665

Abstract

ABSTRACT FUEL BURN-UP DISTRIBUTION AND TRANSURANIC NUCLIDE CONTENTS PRODUCED AT THE FIRST CYCLE OPERATION OF AP1000. AP1000 reactor core was designed with nominal power of 1154 MWe (3415 MWth), operated within life time of 60 years and cycle length of 18 months. For the first cycle, the AP1000 core uses three kinds of UO2 enrichment, they are 2.35 w/o, 3.40 w/o and 4.45 w/o. Absorber materials such as ZrB2, Pyrex and Boron solution are used to compensate the excess reactivity at the beginning of cycle. In the core, U-235 fuels are burned by fission reaction and  produce energy, fission products and new neutron. Because of the U-238 neutron absoption reaction, the high level radioactive waste of heavy nuclide transuranic such as Pu, Am, Cm and Np are also generated. They have a very long half life. The purpose of this study is to evaluate the result of fuel burn-up distribution and heavy nuclide transuranic contents produced by AP1000 at the end of first cycle operation (EOFC). Calculation of ¼ part of the AP1000 core in the 2 dimensional model has been done using SRAC2006 code with the module of COREBN/HIST. The input data called the table of macroscopic crossection, is calculated using module of PIJ. The result shows that the maximum fuel assembly (FA) burn-up is 27.04 GWD/MTU, that is still lower than allowed maximum burn-up of 62 GWD/MTU.  Fuel loading position at the center/middle of the core will produce bigger burn-up and transuranic nuclide than one at the edges the of the core. The use of IFBA fuel just give a small effect to lessen the fuel burn-up and transuranic nuclide production. Keywords: Fuel Burn-Up, Transuranic, AP1000, EOC, SRAC2006   ABSTRAK DISTRIBUSI BURN-UP DAN KANDUNGAN NUKLIDA TRANSURANIUM YANG DIHASILKAN BAHAN BAKAR PADA SIKLUS OPERASI PERTAMA TERAS AP1000. Reaktor AP1000 didesain dengan daya nominal 1154 MWe (3415 MWth), mampu beroperasi selama umur reaktor sekitar 60 tahun dan memiliki panjang tiap siklus sekitar 18 bulan. Pada siklus operasi pertama, teras AP1000 menggunakan tiga jenis pengkayaan bahan bakar UO2 yaitu 2,35 w/o, 3,40 w/o dan 4,450 w/o. Penyerap neutron ZrB2, Pyrex dan larutan Boron digunakan sebagai kompensasi reaktivitas lebih pada awal siklus. Di dalam teras reaktor, bahan bakar U-235 mengalami pembakaran melalui reaksi fisi yang akan menghasilkan energi, produk fisi dan neutron baru. Karena adanya reaksi serapan neutron oleh U-238 maka reaktor juga menghasilkan limbah radioaktif tingkat tinggi berupa nuklida transuranium yang mempunyai waktu paruh sangat panjang seperti Np, Pu, Am, dan Cm. Dalam penelitian ini dilakukan analisis hasil perhitungan distribusi burn-up bahan bakar dan kandungan nuklida transuranium yang dihasilkan oleh teras AP1000 saat akhir siklus operasi pertama. Perhitungan model geometri 2 dimensi teras AP1000 bentuk ¼ bagian dilakukan dengan paket program SRAC2006 modul COREBN/HIST. Sedangkan input data berupa tabel tampang lintang makroskopik diperoleh dari perhitungan dengan modul PIJ. Hasil prhitungan menunjukkan bahwa burn-up perangkat bahan bakar (Fuel Assembly, FA) tertinggi  adalah sebesar 27,04 GWD/MTU dan ini masih jauh lebih rendah dari batas maksimum burn-up yang diijinkan yaitu 62 GWd/MTU. Posisi pemuatan perangkat bahan bakar di bagian tengah teras akan menghasilkan burn-up dan nuklida transuranium yang lebih besar dibandingkan dengan ditepi teras. Penggunaan bahan bakar Integrated Fuel Burnable Absorber hanya sedikit berpengaruh terhadap penurunan burn-up dan nuklida transuranium yang dihasilkan. Kata kunci: Fuel burn-up, kandungan nuklida transuranium, AP1000, siklus operasi pertama, SRAC2006 
TEKNIK AKTIVASI FOIL INDIUM UNTUK MENENTUKAN DISTRIBUSI NEUTRON TERMAL DALAM FANTOM PADAT DI BAWAH IRADIASI LINAC 15MV Risalatul Latifah; Johan A.E. Noor; Bunawas Bunawas
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 15, No 2 (2013): Juni 2013
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (547.087 KB)

Abstract

Dewasa ini, penggunaan pesawat linear accelerator (linac) untuk kegiatan terapi pada penyakit kanker mulai intensif digunakan.Keuntungan utama linac dibanding dengan pesawat teleterapi adalah tidak lagi menggunakan sumber radioaktif serta memiliki variasi energi sehingga bisa disesuaikan dengan kebutuhan. Ketika sebuah pesawat linac dioperasikan di atas 10 MV, maka akan terjadi reaksi fotoneutron (γ,n) hasil dari interaksi energi sinar-X tinggi yang menumbuk material-material penyusun komponen pesawat linac seperti target, kolimator dan filter. Reaksi fotoneutron ini akan menghasilkan neutron. Pengukuran fluks neutron sangat penting untuk dilakukan terkait dengan keselamatan pada tindakan radioterapi dikarenakan emisi neutron ini merupakan radiasi sekunder yang akan menaikkan resiko kanker sekunder pada pasien akibat bertambahnya dosis radiasi yang diterima. Studi ini mengevaluasi fluks neutron yang dihasilkan oleh pesawat linac 15 MV menggunakan teknik aktivasi foil. Sebanyak 45 foil disisipkan dalam fantom padat yang diradiasi oleh linac untuk mengetahui besarnya fluks neutron terhadap fungsi kedalaman.Nilai yang didapat dimaksudkan untuk mengestimasi dosis tambahan untuk pasien ketika menjalani treatment menggunakan linac pada operasi di atas 10 MV. Dengan menggunakan hasil analisa spektrometer gamma dari foil indium yang teraktivasi, nilai fluks mengalami kenaikan seiring dengan bertambahnya kedalaman sampai pada 7 cm di bawah permukaan dengan nilai 2,6 x 106 ncm-2s-1 kemudian terus menurun seiring bertambahnya jarak. Pola ini terjadi karena adanya proses termalisasi neutron. Dengan menggunakan metode faktor konversi dosis neutron termal, maka diketahui dosis tambahan dari fluks neutron maksimum yang diterima pasien adalah 0,86 mSv/menit. Kontribusi dosis ini relatif kecil yaitu sebesar 0,1% dari dosis terapi.Kata kunci: Fluks neutron termal, LINAC, indium, fantom, aktivasi foil. Nowadays, using linear accelerator (LINAC) for therapeutic cancer activity intensively use. The advantages of linac compared to teletherapy plane are no longer using radioactive sources and have a variety of energy thus can be adapted to the needs . When a linac is operated above 10 MV , there will be a photoneutron reaction (γ,n) from the interaction of high X-rays energy striking the material components of linac such as target , collimator and filter. Photoneutron reaction will produce neutrons. Measurement of neutron flux is very important to the safety in the radiotherapy due to neutron emission is a secondary radiation that would increase the risk of secondary cancers in patients due to increasing the dose of radiation received . This study evaluated the neutron flux generated by the 15 MV linac using foil activation technique. The 45 foils inserted in a solid phantom irradiated by the linac to determine the neutron flux on the function of depth. This value will be used to estimate the additional dose to the patient while undergoing treatment using the linac operating above 10 MV. By using a gamma spectrometer analysis of the activated indium foil, flux values increase by adding depth of up to 7 cm below the surface with a value of 2.6 x 106 ncm-2s-1 and it would be decrease by increasing depth. This pattern occurs because the neutron thermalization process. By using the method of thermal neutron dose conversion factor, additional dose for maximum neutron flux that received by patients was 0.86 mSv/min. This dose contribution is relatively small, it is only 0.1 % of the therapeutic dose. Keywords: Thermal neutron flux, LINAC, indium, phantom, activation foil.
SUBCRITICALITY ANALYSIS OF HTR-10 SPENT FUEL CASK MODEL FOR THE 10 MW HTR INDONESIAN EXPERIMENTAL POWER REACTOR Tagor Malem Sembiring; Pungky Ayu Artiani
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 3 (2018): Oktober 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (616.9 KB) | DOI: 10.17146/tdm.2018.20.3.4630

Abstract

The 10 MW HTR Indonesian Experimental Power Reactor (RDE reactor) is designed identical with the HTR-10 in China, conceptually.  However, the review results showed that the spent fuel cask model which is used between two reactors is fully different, such as size and capacity. The proposed cask model in RDE reactor can hold 15 times more fuel pebbles than HTR-10 has.  This research activities deal with the subcriticality analysis for the spent fuel cask of RDE reactor if using the HTR-10 cask model.  The subcriticality condition is designed to meet the limit of safety value.  The objective of this research is to determine the subcriticality value in the normal and accident events for the spent fuel cask when it is in the reactor building and the spent fuel cask room.  All calculations were carried out by MCNP6.1 code.  The selected external events are the water ingress (reactor room), water flood and the combination event of water flood and earthquake.  The calculation results showed that the maximum value of keff (3σ) are  0.47510 and 0.19214 for the cask in the reactor building and in the spent fuel cask room, respectively.  This value is far from the limit value of 0.95. The calculation results showed that the spent fuel cask are in the safe condition eventhough in the worst combination events, the cask is flooded and earthquake. The HTR-10 spent fuel cask can be proposed as an alternative for the RDE reactor to get an efficient reactor building.Keywords: spent pebble fuel element, HTGR, subcriticality, MCNP6.1, RDE reactor ANALISIS SUBKRITIKALITAS PENYIMPAN BAHAN BAKAR BEKAS MODEL CASK REAKTOR HTR-10 UNTUK REAKTOR DAYA EKSPERIMENTAL 10 MW TERMAL. Reaktor Daya Eksperimental (RDE) secara konseptual didesain identik dengan reaktor HTR-10 di Tiongkok.  Meskipun demikian, terdapat perbedaan yang signifikan untuk desain konseptual cask penyimpan bahan bakar bekas di kedua reaktor seperti dimensi dan kapasitas.  Kegiatan penelitian ini berkaitan dengan analisis subkritikalitas cask penyimpan elemen bahan bakar bekas tipe pebble di RDE jika menggunakan model cask yang dipakai di HTR-10. Kondisi sub-kritikalitas didesain memenuhi nilai batas keselamatan. Tujuan penelitian adalah menentukan nilai subkritikalitas dalam keadaan normal atau kondisi kecelakaan di gedung reaktor dan di gudang penyimpan bahan bakar bekas.  Perhitungan dilakukan dengan paket program MCNP6.1. Kejadian kecelakaan yang dipilih adalah masuknya air ke dalam cask, cask terendam air dan kombinasi cask terendam air dan kejadian gempa. Hasil perhitungan menunjukkan bahwa nilai maksimum keff (3σ) untuk cask di gedung reaktor dan di gudang penyimpan bahan bakar bekas masing-masing adalah 0,47510 dan 0,19214.  Nilai ini masih jauh dari batas 0,95.  Hasil perhitungan menunjukkan bahwa cask penyimpan bahan bakar bekas tetap dalam keadaan selamat meski terjadi kombinasi 2 kejadian eksternal.Kata kunci: elemen bahan bakar bekas tipe pebble, HTGR, subkritikalitas, MCNP6.1, RDE
ANALISIS FAKTOR PUNCAK DAYA TERAS RSG-GAS BERBAHAN BAKAR U3Si2-Al 4,8 gU/cc DENGAN KAWAT KADMIUM Jati Susilo; Endiah Pudjihastuti
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 3 (2010): Oktober 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (267.876 KB)

Abstract

Untuk meningkatkan kinerja teras RSG-GAS, maka telah dilakukan penelitian tentang penggunaan bahan bakar U3Si2-Al kerapatan 4,8 gU/cc. Penggunaan bahan bakar tersebut dapat meningkatkan panjang siklus operasi dari 20 menjadi 49 hari. Sehingga reaktor beroperasi lebih efisien. Selain itu juga akan menaikkan reaktivitas lebih teras yang berakibat pada nilai reaktivitas batang kendali saat one stuck rod menjadi positif. Hal tersebut dapat diantisipasi dengan cara penambahan kawat kadmium pada kedua sisi tiap-tiap pelat bahan bakar. Untuk teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc maka diperlukan kawat kadmium dengan minimal diameter 0,7 mm. Selain reaktivitas lebih, parameter neutronik lainnya yang perlu diketahui dalam mendesain suatu teras agar tidak terjadi kerusakan bahan bakar adalah nilai faktor puncak daya (power peaking faktor ppf). Untuk itu, dalam penelitian ini dilakukan perhitungan distribusi faktor daya teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc dengan kawat kadmium. Perhitungan tersebut dilakukan dengan paket program SRAC modul CITATION. Hasil perhitungan menunjukkan bahwa teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc dengan kawat kadmium mempunyai ppf sebesar 1,2225 yang sedikit lebih besar dibandingkan dengan ppf teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 2,96 gU/cc (1,1642). Dari analisis hasil perhitungan dapat disimpulkan bahwa nilai ppf untuk teras RSG-GAS berbahan bakar U3Si2-Al kerapatan 4,8 gU/cc dengan kawat kadmium masih dibawah nilai batas dalam LAK RSG-GAS.Kata kunci : faktor puncak daya, kawat kadmium, SRAC To upgrade the ability of RSG-GAS core, research about utilization of U3Si2-Al fuel with 4.8 gU/cc density has been done. The using of U3Si2-Al fuel with 4.8 gU/cc density in the RSG-GAS core could increase the operation cycle length from 20 to 29 days. To the reactor can be operated more efficiently. In another side, the effect of high density fuel is the value of control rod reactivity in the one stuck rod condition to be positive caused by increasing core excess reactivity. Those problem has been solved by added cadmium wire at two each side of all the fuel plate. For the RSG-GAS core U3Si2-Al fueled with 4.8 gU/cc density need cadmium wire with minimum diameter about 0.7 mm. Beside excess reactivity, another neutronic parameter that important to observed in the core design in order the fuel damage cannot happen is value of power peaking factor (ppf). Therefore, in this research, the calculation of power factor distribution for RSG-GAS core U3Si2-Al fuel 4,8 gU/cc density with Cd wire has been done by using CITATION module of SRAC code. Calculation result show that the RSG-GAS core U3Si2-Al fuel 4.8 gU/cc density with added cadmium wire at the each side of fuel plate have ppf about 1.2225 .Those value only a little bigger compared with ppf for current RSG-GAS core fueled U3Si2-Al with 2,96 gU/cc density, that is 1.1642. From the analysis of calculation result can concluded that the value of ppf for the RSG-GAS core U3Si2-Al fuel 4.8 gU/cc density with added by cadmium wire was still lower than maximum margin value at the design data in the SAR of the RSG-GAS. Keywords : power peaking factor, cadmium wire, SRAC
INVESTIGASI KARAKTERISTIK TERMOHIDROLIKA TERAS REAKTOR DAYA KECIL DENGAN PENDINGINAN SIRKULASI ALAM MENGGUNAKAN RELAP5 Susyadi Susyadi; Hendro Tjahjono; Sukmanto Dibyo; Jupiter Sitorus Pane
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 18, No 1 (2016): Februari 2016
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (760.867 KB) | DOI: 10.17146/tdm.2016.18.1.2330

Abstract

ABSTRAK INVESTIGASI KARAKTERISTIK TERMOHIDROLIKA TERAS REAKTOR DAYA KECIL DENGAN PENDINGINAN SIRKULASI ALAM MENGGUNAKAN RELAP5. Reaktor modular daya-kecil (small modular reactor, SMR) memiliki prospek tinggi untuk dibangun di Indonesia. Keluaran dayanya yang relatif kecil dan disainnya yang kompak serta dapat dikonstruksi secara modular memberikan keunggulan fleksibilitas pembangunan yang lebih baik dibanding reaktor konvensional berdaya besar. Disain sistem reaktor kategori ini sangat bervariasi, salah satu diantaranya adalah jenis reaktor air tekan (pressurized water reactor, PWR) yang menerapkan sirkulasi alamiah pada sistem pendingin primernya. Selain itu reaktor ini juga memiliki teras (core) lebih pendek dibanding PWR konvensional. Dari kedua perbedaan tersebut maka terdapat kemungkinan perbedaan pola perpindahan panas yang dapat berimplikasi terhadap keselamatan secara keseluruhan. Oleh karena itu, pada penelitian ini dilakukan investigasi terhadap karakteristik termohidrolika teras reaktor tersebut khususnya karakteristik temperatur fluida dan bahan bakar serta laju alir fluidanya. Tujuannya adalah untuk mengetahui perbedaan marjin keselamatan temperatur teras reaktor bila dibanding dengan PWR konvensional. Investigasi dilakukan dengan menggunakan program RELAP5, dimana secara parsial teras reaktor dimodelkan menggunakan model-model generik yang ada pada program dan dilakukan beberapa perhitungan kondisi tunak. Hasil perhitungan menunjukkan bahwa saat beroperasi pada daya nominalnya, reaktor modular ini memiliki margin temperatur pendidihan sebesar 2K lebih baik dibanding reaktor konvensional. Selain itu, keunggulan marjin keselamatan reaktor modular daya-kecil ini juga ditunjukkan dari naiknya laju alir mengikuti kenaikan dayanya yang berarti memiliki sifat keselamatan yang melekat (inherent safety). Kata kunci: reaktor modular daya-kecil, PWR, sirkulasi alam, RELAP5, termohidrolika   ABSTRACT INVESTIGATION ON CORE THERMAL HYDRAULIC CHARACTERISTICS OF SMALL MODULAR REACTOR WITH NATURAL CIRCULATION COOLING USING RELAP5. Small modular reactor (SMR ) is very prospective to be deployed in Indonesia. Its low output power, compact design and capability to be constructed modularly provide better deployment flexibility compared to a large conventional reactor. There are various designs of SMRs, one of them implements natural circulation for its primary cooling system or in other words the reactor uses no primary pumps. Besides, the dimension of fuel element is shorter than the one used by large reactor. These two aspects may produce different heat transfer behavior, which could lead to a safety implication.  For that reason, this research investigates thermal hydraulic characteristics of the core of SMR with naturally circulating coolant, especially on the fuel and coolant temperatures and mass flow rate. The purpose is to identify the thermal safety margin difference of the reactor compared with conventional PWR.  The investigation was performed using RELAP5 in which the core was partially represented by means of generic models of the program and continued with steady state calculations. The result shows that during nominal power operation, the reactor has better of 2K  degree for boiling temperature margin than the large conventional PWR. In addition, the excellence of SMR safety margin was shown by the increase of primary coolant flow rate following the increase of power, which means that the reactor has a distinctive inherent safety. Keywords: small modular reaktor, PWR, natural circulation, RELAP5, thermal-hydraulic
PREDICTION OF FUEL TEMPERATURE OF AP1000 DUE TO THE FORMATION OF CRUD AND OXIDE LAYER Muhammad Darwis Isnaini; Muhammad Subekti; Geni Rina Sunarya
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 19, No 2 (2017): Juni 2017
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.911 KB) | DOI: 10.17146/tdm.2017.19.2.3521

Abstract

An analysis to predict the fuel temperature due to crud and oxide layer formed on the hot sub-channel cladding surface of AP1000 reactor has been performed. During reactor operation, the heat transfer and cooling process occur on the fuel cladding surface. During the heat exposure process, an oxide layer and crud are formed on the cladding surface. The decrease of heat transfer performance will increase the fuel and cladding temperatures. Therefore, the effect of fuel temperature increase during the heat exposure process has to be analyzed. The analysis was conducted for nominal power of 3400 MWt using COBRA-EN code, by varying the modular oxide thickness of 0, 20, 40, 60, 80, 100 and 120 mm, crud thickness of 0, 10 and 20 mm and black oxide thickness of 0, 10, 20, 30 and 40 mm. For full cycle hot sub-channel condition, the combination of crud thickness of 20 mm and modular oxide thickness of 115 mm give prediction of the peak fuel center line temperature and the peak cladding surface temperature of 1870.73°C and 609.40°C, respectively. However, the oxide layer is predicted only formed on hot sub-channel during BOC (about 40% of full cycle). The results show that the prediction of the peak fuel center line temperature and the peak cladding surface temperature are 1713.18°C and 451.87°C, respectively. Compared to the normal and fresh fuel conditions, the peak fuel center line temperature and the peak cladding surface temperature increase by 6.53% and 29.86%, respectively.Keywords: Fuel temperature, Crud, Oxide layer,  COBRA-EN, AP1000 PREDIKSI TEMPERATUR BAHAN BAKAR AP1000 AKIBAT ADANYA BENTUKAN ENDAPAN DAN LAPISAN OKSIDA. Telah dilakukan penelitian untuk memprediksi temperatur bahan bakar akibat terbentuknya endapan dan lapisan oksida pada permukaan kelongsong sub kanal panas dari reaktor AP1000. Selama operasi reaktor, proses pemindahan kalor and pendinginan terjadi pada permukaan kelongsong. Selama proses pemaparan kalor, endapan dan lapisan oksida terbentuk pada permukaan kelongsong. Berkurangnya pemindahan kalor akan berakibat pada kenaikan temperatur bahan bakar dan kelongsong. Oleh karena itu, dampak kenaikan temperatur bahan bakar selama proses pemaparan kalor perlu dianalisis. Analisis dilakukan pada kondisi daya nominal sebesar 3400 MWt dengan menggunakan kode COBRA-EN, untuk variasi tebal lapisan oksida modular 0, 20, 40, 60, 80, 100 dan 120 mm, variasi tebal endapan 0, 10 dan 20 mm, dan variasi tebal lapisan oksida hitam 0, 10, 20, 30 dan 40 mm. Untuk kondisi sub kanal panas selama siklus penuh, kombinasi tebal 20 mm dan tebal lapisan oksida modular 115 mm memberikan prediksi temperatur puncak sumbu bahan bakar dan temperatur puncak permukaan kelongsong masing-masing sebesar 1870,73°C dan 609,40°C. Akan tetapi, lapisan oksida diprediksi hanya terjadi pada sub kanal panas selama awal siklus (sekitar 40% waktu satu siklus penuh). Hasil perhitungan menunjukkan bahwa prediksi temperatur puncak sumbu bahan bakar dan temperatur puncak permukaan kelongsong masing-masing sebesar 1713,18°C dan 609,40°C. Dibandingkan dengan temperatur bahan bakar pada kondisi segar dan normal, maka temperatur puncak sumbu bahan bakar dan temperatur puncak permukaan kelongsong mengalami kenaikan masing-masing sebesar 6,53% dan 29,86%. Kata kunci: Temperatur bahan bakar, endapan, lapisan oksida, COBRA-EN, AP1000.
APLIKASI TEKNIK AAN DI REAKTOR RSG-GAS PADA PENENTUAN UNSUR ESENSIAL DAN TOKSIK DI DALAM IKAN DAN PAKAN IKAN Saeful Yusuf
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 16, No 1 (2014): Pebruari 2014
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (352.165 KB)

Abstract

Pada makalah ini diuraikan tentang aplikasi teknik AAN (Analisis Aktivasi Neutron) dalam penentuan konsentrasi unsur-unsur esensial dan cemaran yang terkandung di dalam beberapa spesies ikan dan pakan ikan. Unsur-unsur esensial yang terkandung dalam pakan ikan buatan juga dianalisis untuk mengetahui pengaruhnya terhadap ikan. Penentuan unsur menggunakan teknik AAN dengan metode perbandingan dan metode k0-AAN. Sampel diiradiasi di reaktor RSG-GAS yang memiliki fluks neutron thermal 5 x 1013 n.cm-2.s-1 pada daya 15 MW. Hasil penelitian menunjukkan bahwa 12 unsur di dalam 11 spesies ikan air laut dan air tawar telah ditentukan yaitu As, Br, Cr, Co, Cs, Fe, Hg, K, Na, Rb, Se and Zn. Konsentrasi cemaran As didalam ikan laut sudah melampaui batas maksimum 1 mg/kg, sedangkan konsentrasi cemaran Hg masih dibawah batas maksimum 0,5 mg/kg, baik untuk ikan laut maupun ikan air tawar. Unsur K dan Na merupakan unsur makroesensial sedangkan unsur Cr, Co, Fe, Se and Zn adalah termasuk unsur mikroesensial. Secara umum ditunjukkan bahwa kandungan mineral didalam ikan laut lebih tinggi konsentrasinya dibandingkan ikan air tawar. Br, Cs dan Rb merupakan unsur-unsur non esensial yang teridentifikasi dalam semua ikan yang dianalisis. Penelitian terhadap pakan ikan air tawar menunjukkan bahwa semua unsur yang teridentifikasi juga terdapat di dalam ikan laut dan ikan air tawar. Hal ini menunjukkan bahwa pakan ikan berkontribusi terhadap konsentrasi unsur di dalam ikan air tawar.Kata kunci : Analisis aktivasi neutron, unsur esensial, unsur cemaran, ikan, pakan ikan This paper reported on the application of NAA (Neutron Activation Analysis) Technique in the determination of the concentration of the essential and toxic elements in some species of fish and fish feed. Determination of elements using instrumental NAA technique with comparison and k0-INAA methods. Samples were irradiated in the RSG-GAS which has a thermal neutron flux  5.0E +13 ncm-2s-1. The results showed that as many as 12 elements in 11 species of fish in the sea water and fresh water has been determined that As, Br, Cr, Co, Cs, Fe, Hg, K, Na, Rb, Se and Zn. For toxic elements, As concentrations in marine fish has exceeded the maximum limit of 1 mg / kg, Hg concentrations were still below the maximum limit of 0.5 mg / kg, both for marine fish and fresh water fish. K and Na elements is the macro esensial element while Cr, Co, Fe, Se and Zn elements are micro esensial elements. The concentration of minerals in marine fish higher concentration than fresh water fish. Br, Cs, and Rb are non-essential elements were identified in all analyze fish. The results also showed that all of the elements identified in the fish feed contained in fish. This suggests that fish feed contributes to the concentration of elements in freshwater fish. Keywords : Neutron activation analysis, essential element, toxic element, fish, fish feed
NEUTRON AND GAMMA SPECTRUM ANALYSIS OF KARTINI RESEARCH REACTOR FOR BORON NEUTRON CAPTURE THERAPY (BNCT) Rosilatul Zailani; Gani Priambodo; Yohannes Sardjono
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 20, No 2 (2018): JUNI 2018
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (6355.028 KB) | DOI: 10.17146/tdm.2018.20.2.4067

Abstract

MCNPX was used to design a three-dimensional model of Kartini Research Reactor (KRR) as a neutron source and performed criticality calculation. The criticality calculation of the reactor aims to obtain the neutron and gamma spectrum by simulating the fission reaction inside the reactor core. Total source histories were 105 per cycle, when the number of cycle for criticality calcutation was 1000 cycles with 60 skipped cycles. The reactor criticality according to the simulation result is 1.00179±0.00007. The total neutron flux on ring A, B, C, D, E and F inside the reactor core are respectively 6.553×1011 n/cm2s, 4.53×1012 n/cm2s, 4.167×1012 n/cm2s, 3.751×1012 n/cm2s, 2.914×1012 n/cm2s and 3.107×1012 n/cm2s. The total gamma flux is 6.956×1011 particles/cm2s, 4.838×1012 particles/cm2s, 4.398×1012 particles/cm2s, 3.962×1012 particles/cm2s, 2.953×1012 particles/cm2s and 2.013×1012 particles/cm2s, respectively for each ring. Thermal neutron fluxes recorded on the base of radial piercing beamport were 4.678×1010 n/cm2s, with the epithermal neutron flux of 5.37×109 n/cm2s and fast neutron flux of 4.17×1010 n/cm2s. The gamma flux on that side reaches 4.22×1012 particles/cm2s. On the 92-cm-ranges from the base inside radial piercing beamport, both neutron and gamma flux decrease up to 5.11×108 n/cm2s for thermal neutron flux, 4.598×106 n/cm2s for epithermal neutron flux, 2.55×107 n/cm2s for fast neutron flux and 8.214×1010 particles/cm2s for gamma flux. In conclusion, the spectrum yield from this study can be use to define the source spectrum of the simulations and optimations prior to BNCT pre-clinical trial (in vivo/in vitro test) use KRR radial piercing beamport.Keywords: BNCT, radial piercing beamport, Kartini Research Reactor, neutron spectrum, gamma spectrum ANALISIS SPEKTRUM NEUTRON DAN GAMMA UNTUK BORON NEUTRON CAPTURE THERAPY (BNCT) DI REAKTOR KARTINI. MCNPX telah digunakan untuk memodelkan bentuk 3 dimensi dari Reaktor Kartini sebagai sumber neutron dan melakukan perhitungan kekritisan. Perhitungan kekritisan reaktor bertujuan untuk mendapatkan spektrum neutron dan gamma dengan mensimulasikan reaksi fisi yang terjadi di dalam inti reaktor. Jumlah source histories adalah 105 per iterasi, dimana banyaknya iterasi yang dilakukan dalam perhitungan kritikalisasi adalah 1000 iterasi dengan jumlah iterasi yang dilewatkan adalah 60 iterasi. Nilai kekritisan reaktor sesuai dengan hasil simulasi adalah 1,00179±0,00007. Fluks neutron total pada ring A, B, C, D, E and F di dalam inti reaktor masing-masing adalah 6,553×1011 n/cm2s, 4,53×1012 n/cm2s, 4,167×1012 n/cm2s, 3,751×1012 n/cm2s, 2,914×1012 n/cm2s and 3,107×1012 n/cm2s. Total fluks gamma adalah 6,956×1011 partikel/cm2s, 4,838×1012 partikel/cm2s, 4,398×1012 partikel/cm2s, 3,962×1012 partikel/cm2s, 2,953×1012 partikel/cm2s dan 2,013×1012 partikel/cm2s, masing-masing untuk tiap ring. Fluks neutron termal hasil perekaman pada pangkal beamport tembus radial adalah 4,678×1010 n/cm2s, dengan fluks neutron epitermal sebesar 5,37×109 n/cm2s dan fluks neutron cepat sebesar of 4,17×1010 n/cm2s. Fluks gamma pada bagian tersebut mencapai 4,22×1012 partikel/cm2s. pada jarak 92 cm dari pangkal beamport tembus radial, fluks neutron dan gamma turun mencapai 5,11×108 n/cm2s untuk fluks neutron termal, 4,598×106 n/cm2s untuk fluks neutron epitermal, 2,55×107 n/cm2s untuk fluks neutron cepat dan 8,214×1010 partikel/cm2s untuk fluks gamma. Kesimpulannya, spektrum yang dihasilkan pada studi kali ini dapat digunakan untuk mendefinisikan sumber dalam simulasi dan optimasi terutama untuk keperluan uji pre-klinis (uji in vivo/ in vitro) BNCT menggunakan beamport tembus radial Reaktor Kartini. Kata kunci: BNCT, beamport tembus radial, Reaktor Kartini, spektrum neutron, spektrum gamma
VERIFIKASI MODEL KONDENSASI PADA RELAP5/SCDAPSIM/MOD 3.4 Surip Widodo
JURNAL TEKNOLOGI REAKTOR NUKLIR TRI DASA MEGA Vol 12, No 1 (2010): Pebruari 2010
Publisher : Pusat Teknologi Dan Keselamatan Reaktor Nuklir (PTKRN)

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (418.507 KB)

Abstract

RELAP5/SCDAPSIM /MOD3.4 merupakan salah satu program komputer yang sering digunakan untuk menganalisis sistem keselamatan reaktor nuklir. Untuk mengetahui keakuratan program komputer ini dalam memprediksi koefisien perpindahan kalor kondensasi uap yang tercampur dengan gas tak-dapat terkondensasi, maka perlu dilakukan verifikasi model kondensasi yang ada di dalam program komputer tersebut. Verifikasi dilakukan dengan cara membandingkan prediksi nilai koefisien perpindahan panas kondensasi RELAP5/SCDAPSIM/MOD3.4 dengan nilai yang didapat dari hasil eksperimen. Perbandingan dilakukan dengan cara mensimulasikan fasilitas eksperimen PCCS ke dalam model input untuk RELAP5. Hasil verifikasi menunjukkan bahwa model kondensasi pada RELAP5 memprediksi koefisien perpindahan kalor kondensasi lebih rendah 20% dibandingkan dengan nilai hasil eksperimen walaupun mempunyai kecenderungan yang sama. Oleh karena itu diperlukan korelasi kondensasi yang lebih baik untuk diterapkan pada RELAP5/SCDAPSIM/MOD3.4 guna memperbaiki nilai koefisien perpindahan kalor kondensasi uap yang tercampur dengan gas tak-dapat terkondensasi.Kata kunci: model kondensasi, perpindahan kalor, tak-dapat terkondensasi, RELAP5/SCDAPSIM/MOD3.4, fasilitas eksperimen PCCS. RELAP5/SCDAPSIM/MOD3.4 is one of computer programs that is often used for performing nuclear reactor safety system analysis. In order to know the accuracy of this computer program in predicting condensation heat transfer coefficient of vapor mixed with non-condensable gas, it is necessary to perform verification of the condensation model in the computer program. The verification is done by comparing prediction of condensation heat transfer coefficient value of RELAP5/SCDAPSIM/MOD3.4 with condensation heat transfer coefficient value of experiment result.. The comparison was done by performing simulation PCCS experiment facility into RELAP5 input model. The verification results indicate that RELAP5’s condensation model predicts lower condensation heat transfer coefficient by 20 % compared to the experiment result although has the same tendency. Therefore, a new better condensation correlation is needed to be applied in the RELAP5/SCDAPSIM/MOD3.4 to improve the heat transfer coefficient value of vapor with noncondensable gases. Keywords: condensational model, heat transfer, non-condensable, RELAP5/SCDAPSIM/MOD3.4, PCCS experiment facility

Page 3 of 21 | Total Record : 210