cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
Bulletin of Electrical Engineering and Informatics
ISSN : -     EISSN : -     DOI : -
Core Subject : Engineering,
Bulletin of Electrical Engineering and Informatics (Buletin Teknik Elektro dan Informatika) ISSN: 2089-3191, e-ISSN: 2302-9285 is open to submission from scholars and experts in the wide areas of electrical, electronics, instrumentation, control, telecommunication and computer engineering from the global world. The journal publishes original papers in the field of electrical, computer and informatics engineering.
Arjuna Subject : -
Articles 12 Documents
Search results for , issue "Vol 5, No 3: September 2016" : 12 Documents clear
A New Duplication Task Scheduling Algorithm in Heterogeneous Distributed Computing Systems Aida A Nasr; Nirmeen A EL-Bahnasawy; Ayman EL-Sayed
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (793.273 KB) | DOI: 10.11591/eei.v5i3.559

Abstract

The efficient scheduling algorithm is critical to achieve high performance in parallel and distributed systems. The main objective of task scheduling is to assign the tasks onto the available processors with the aim of producing minimum schedule length and without violating the precedence constraints. So we developed new algorithm called Mean Communication Node with Duplication MCND algorithm to achieve high performance task scheduling. The MCND algorithm has two phases namely, task priority and processor selection. Our algorithm takes into account the average of parents' communication costs for each task to reduce the overhead communication. The algorithm uses new task duplication algorithm. We build a simulation to compare the MCND algorithm with CPOP with duplication algorithm. The algorithms are applied on real application. From results, the MCND algorithm shows the best results
Security Technology by using Firewall for Smart Grid Ayla Hasanalizadeh Khosroshahi; Hossein Shahinzadeh
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (817.361 KB) | DOI: 10.11591/eei.v5i3.545

Abstract

Due to the increasing development of computer systems and information networks, power grids should change extensively too. Nowadays, substantial movement has begun to implement the Smart Grid industry around the world. Since with the creation of smart electricity grids, it is possible to access the internal network from the external spaces, it is also necessary to protect information and data against unauthorized access. Therefore, a firewall should be used for information security. The firewall based on existing security regulations, decides which data is incoming to the network or going out of the network. Considering the discussions of passive defense topics at the national level and also the high importance of information security in Smart Grids, in this paper, in addition to examining the Firewalls, its advantages and disadvantages are also stated. Although the firewall has a major role in establishing security, and its installation and appropriate configuration can only be one of the primary activities in this field, we should also take advantage of other security mechanisms to enhance the security of the Smart Grid.
A Naïve Visual Cryptographic Algorithm for the Transfer of Compressed Medical Images Shivaputra Shivaputra; HS Sheshadri; V Lokesha
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1029.143 KB) | DOI: 10.11591/eei.v5i3.544

Abstract

The transmission of a suitably compressed image over a bandwidth, over long distances, gives rise towards a new era in the field of information technology. A gradual increase in this appending scenic application, involving the transfer of the images securely over the Ethernet has become an increasingly important aspect to be addressed during thou phenomenon, especially in the transfer of the digital medical images vividly, encapsulated with abundant information related to these images. The compressed medical images of the DICOM format contain certain amount of confidential data, pertaining to a clinical research or to an individual, and the confidentiality of the same has to be preserved from various security threats and eves-dropping. With a widespread applications among various multimedia applicative systems, telemedicine, medical imaging, military and certain safety-critical applications, inter-net and intra-net communicative applications, etc, a reliable transfer of suitable information, efficiently and securely is considered as one of the revolutionary aims in today’s communication technology and visual cryptographic methodologies. Real-time applications as such detailed above majorly is concerned with the security measures and many algorithms have been developed as a proof for various visual cryptographic methodologies. In this paper we propose an efficient and a reliable visual cryptographic methodology which focuses on the encryption and decryption of the two-dimensional DICOM standard compressed medical image, effectively.  This paper discusses an efficient design of 192 bit encoder using AES Rijndael Algorithm with the decomposition of an image into square image size blocks and the image blocks are shuffled using 2D CAT map. The shuffling of the image blocks/pixels employs a Logistic map of these image pixels coupled with 2D mapping of the pixels of the DICOM standard medical image, generated randomly, being the control parameter thereby creating a confusion between the cipher and the plain image, gradually increasing the resistive factor against the significant attacks. This paper proposes various analytical metrics such as correlation analysis, entropy analysis, homogeneity analysis, energy analysis, contrast and mean of absolute deviation analysis, to evaluate the proposed algorithm, and their suitability in image encryption applications.
Efficient Hardware Architecture for Cyclostationary Detector D Damodaram; T Venkateswarlu
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.165 KB) | DOI: 10.11591/eei.v5i3.543

Abstract

Cognitive radio is one of the modern techniques which is evolved for utilising the unused spread spectrum effectively in wireless communication. In cognitive radio system the foremost concept is sensing the holes (spaces) in the frequency spectrum allotted and it facilitates a way that how effectively and efficiently the bandwidth is used by finding the spectrum holes in a designated spectrum. There are various methods available for sensing the spectrum and one such a sensing method is cyclostationary detection.  The method of cyclostationary feature mainly focuses on detecting whether the primary user is present or absent. The threshold of a signal is calculated by cyclic cross-periodogram matrix of the corresponding signal to determine the presence of signal or noise. The difficulty in evaluating the targeted threshold is evaded by training an artificial neural network by extracted cyclostationary feature vectors which are obtained by FFT accumulation method. This paper proposes a hardware architecture for cyclostationary detection.
New Electromagnetic Force-Displacement Sensor Amine Benabdellah; Zakarya Abbassi; Abdelrhani Nakheli
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (325.166 KB) | DOI: 10.11591/eei.v5i3.542

Abstract

A new electromagnetic force-displacement sensor is presented. Its operating principle is based on the fundamental laws of electromagnetism (Faraday-Lenz law) and the mechanical properties of a spring. The active elements are two coils made by a wire of 60 µm in diameter. Using different wire diameters or different number of wire turns in the coil modify the intensity of the magnetic field and the sensor response. The average accuracy of the sensor is about ∆d=1µm, and as a force sensor is about ∆F=1µN. This sensor could be successfully used for the manufacture of several measuring instruments.
Simulation and Implementation of a Wireless Metal Detector with Variety of Flexible Responses- A Solution to Extensive Security Threats Awais Ahmed; Hassan Sarwar
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (970.093 KB) | DOI: 10.11591/eei.v5i3.541

Abstract

We proposed a design of a wireless metal detector in this research article. A system is designed which offers a variety of electrical equipments necessary for a privatized metal sensor. The main objective of this research is to provide a mature solution to the recent security threads all over the world by designing a localized wireless metal detection system. Different analysis has been shown graphically in this article. In addition, the system is kept flexible to respond to a security threat e.g. in case of a metal detection. The case study chosen for this article is Pakistan, a country facing extensive threats in the age of globalization.
Development of a Radio Frequency Remote-Controlled Amphibious Solid Waste Collecting Mobot Jay Robert B. Del Rosario; Romwell B. Andutan; Adelfos R. Bautista; Patrick Henry L. Pangilinan; Ruby Anne O. Vega
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (934.015 KB) | DOI: 10.11591/eei.v5i3.540

Abstract

Robots in general are used to aid people in different tasks from simple activities to activities that prevent also people from harm. In fields of Robotics it is important that these robots are not complete replacements of humanity but mere tools that will improve human lives and more so save lives if possible. In this paper, the group presented a remote-controlled mobot with amphibious capabilities. The system is accessible through a radio frequency transmitter and receiver which there is an executable file that allows the mobot to be controlled. The characterization of the system and its performance are presented here as well.
Overview of Passive Light Emitting Diode Driver Circuits for Street Lighting R. Gunabalan
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (395.416 KB) | DOI: 10.11591/eei.v5i3.539

Abstract

This paper describes the overview and comparison of various passive Light Emitting Diode (LED) driver circuits employed for street lighting applications. Passive LED driver circuits are constructed with diodes and capacitors without using any power electronic semiconductor switches which in turn eliminates the secondary supply unit for control circuits and controllers. Passive LED driver circuits are simple in construction, low cost, less maintenance and control free. 50 W LED driver circuit is identified for performance comparison and simulations are performed in matlab- simulink to get an overview of different passive LED driver circuits. The most predominant parameters such as efficiency and total harmonic distortion are compared to identify the suitiblity of the driver circuits for various applications.
Fuzzy Logic Based Direct Power Control of Induction Motor Drive Hossein Rahimi Khoei; Elham Farazande Shahraki
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (637 KB) | DOI: 10.11591/eei.v5i3.538

Abstract

This paper is the design of an induction motor drive system that can be controlled using direct power control. First the possibilities of direct power control (DPC) of induction motors (IMs) fed by a voltage source inverter have been studied. Principles of this method have been separately evaluated. Also the drive system is more versatile due to its small size and low cost. Therefore it is advantageous to use the system where the speed is estimated by means of a control algorithm instead of measuring. This paper proposed one novel induction motor speed control system with fuzzy logic. The estimator was designed and simulated in Matlab/Simulink. Simulation result shows a good performance of speed estimator.
Fault Detection and Classification in Transmission Line Using Wavelet Transform and ANN Purva Sharma; Deepak Saini; Akash Saxena
Bulletin of Electrical Engineering and Informatics Vol 5, No 3: September 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1014.239 KB) | DOI: 10.11591/eei.v5i3.537

Abstract

Recent years, there is an increased interest in fault classification algorithms. The reason, behind this interest is the escalating power demand and multiple interconnections of utilities in grid. This paper presents an application of wavelet transforms to detect the faults and further to perform classification by supervised learning paradigm. Different architectures of ANN aretested with the statistical attributes of a wavelet transform of a voltage signal as input features and binary digits as outputs. The proposed supervised learning module is tested on a transmission network. It is observed that ANN architecture performs satisfactorily when it is compared with the simulation results. The transmission network is simulated on Matlab. The performance indices Mean Square Error (MSE), Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and Sum Square Error (SSE) are used to determine the efficacy of the neural network.

Page 1 of 2 | Total Record : 12