cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
,
INDONESIA
Indonesian Journal of Electrical Engineering and Informatics (IJEEI)
ISSN : 20893272     EISSN : -     DOI : -
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) is a peer reviewed International Journal in English published four issues per year (March, June, September and December). The aim of Indonesian Journal of Electrical Engineering and Informatics (IJEEI) is to publish high-quality articles dedicated to all aspects of the latest outstanding developments in the field of electrical engineering. Its scope encompasses the engineering of Telecommunication and Information Technology, Applied Computing & Computer, Instrumentation & Control, Electrical (Power), Electronics, and Informatics.
Arjuna Subject : -
Articles 18 Documents
Search results for , issue "Vol 8, No 4: December 2020" : 18 Documents clear
Multilayer Structure Technique for Improving Determination of Electromagnetic Properties of Radar Absorbers Based on Two-Layer Method and Flanged Rectangular Waveguide Probe Abdulkadhim Ameen Hassan; Janan Hammed Saadie
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.1444

Abstract

This paper presents further development of utilization of  two-layer method to perform nondestructive electromagnetic properties determination of planar radar absorbers using flanged  open-ended rectangular waveguide probe. A multilayer  structure  of three layers was proposed to improve the measured results of these parameters obtained using two-layer method. These layers were arranged  such  that the test  material is sandwiched between two known low  loss materials to provide the  needed  two independent reflection coefficients necessary to extract them  at different conditions of  testing. The proposed  structure was aimed  to decrease the effect  of direct backing of test material by metal plate, which influences measurement accuracy if  two-layer  method  is used.  The structure permits a suitable electric field interrogation  in test material and decreases the influences of both  radial and surface waves.  FDTD method  was adapted  for  modeling  the problem geometry  to calculate  the reflection coefficients  since a probe with finite flange size is used. Measurements were carried out using the proposed technique to determine complex permittivity and complex permeability of several radar absorbers over X-band  applications of  microwaves. In comparison with both single-layer and two-layer methods results, the measured   results of  these parameters  agreed  well with the published data. by companies and literatures.
Control Strategies of a Gas Turbine Generator: A Comparative Study Lyes Abbassen; Mustapha Zaouia; Nacereddine Benamrouche; Amar Bousbaine
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2100

Abstract

Gas turbine generators are commonly used in oil and gas industries due to their robustness and association with other operating systems in the combined cycles.  The electrical generators may become unstable under severe load fluctuations. For these raisons, maintaining the stability is paramount to ensure continuous functioninality.This paper deals with the modeling and simulation of a single shaft gas turbine generator using the model developed by Rowen and incorporating different types of controllers, viz a Zeigler- Nichols PID controller, a Fuzzy Logic Controller (FLC), FLC-PID and finally a hybridPID/FLC/FLC-PIDcontroller. The study was undertaken under Matlab / Simulink environment with data related to an in service power plant owned by Sonatrach, Algiers, Algeria. The results show that FLC-PID and hybrid tuned controllers provide the best time domain performances.
Design and Performance Analysis of a Wine-bridge RC Harmonic Oscillation Generator with an Operational Amplifier Boyan Karapenev
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.1446

Abstract

This paper presents the special features of harmonic generators and their widespread use and in particular the design, simulation and experimental studies of a Wine-bridge RC generator with an operational amplifier. The results obtained are analyzed and compared. It can be deduced that the parameters of the output signal can be accurately realized - the necessary frequency and the amplitude by setting the parameters of the constituent components.
The Prediction of Earthquake Building Structure Strength: Modified K-Nearest Neighbour Employment Okfalisa Okfalisa; Septian Nugraha; Saktioto Saktioto; Zahidah Zulkifli; S.S.M. Fauzi
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2403

Abstract

The earthquake damage brings significant effects. The resilience of buildings against the earthquake and the destruction’s location is not an efficient outcome from previous research. This study applied the Modified K-Nearest Neighbor (MK-NN) in predicting the concrete structures’ performance despite the earthquakes. The 2-story building prediction covered earthquake history, time, concrete quality, displacement, velocity, and acceleration. The analysis of MK-NN provided the values of Euclidean, distance calculation, validity, and weight voting towards the classification of damages as “Safe” or “Immediate Occupancy” (IO).  The K values exploited were 1, 3, 5, 7, 9, and 11, and simulation data training at 10:90, 20:80, 30:70. This study revealed the highest degree of accuracy at 98.85% with K=1 and a ratio of 30:70. Simultaneously, the lowest error rate was 1.15% at a similar K value and ratio. Herein, MK-NN significantly exceeds the accuracy and error rate of KNN up to 1.02% and 0.69%, respectively. To date, the automatic calculation prototyping software was then successfully developed. Ensuring the application’s accuracy, the Confusion Matrix, the Black box, and User Acceptance Test (UAT) have been performed. In a nutshell, this study provides a significant contribution to planning and information analysis of earthquake-resistant construction.
PV/Wind Hybrid Energy System, Modeling and Simulation at variable weather conditions Abdelhamid Slama; Messaoud Hamouda; Mounir Khiat
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2771

Abstract

This paper presents a modeling and simulation of a grid-connected wind / PV hybrid power system under variable weather conditions. This system includes a wind turbine system, a PV system that shares a DC bus, and no battery. The paper contains an overview of the hybrid system and some previous studies; it presents a brief overview of each component used for this system. Signal distortion remains the great obstacle when connecting to the grid, so the system architecture and its proposed control are also introduced to reduce the distortion of electrical signals to an acceptable value. A simulation of the system’s operation with specific weather conditions in three different modes was performed using the MATLAB Simulink to describe the effect of these weather conditions on the production of electrical energy. Simulation results show how these weather conditions affect the operation of this hybrid system. An acceptable distortion value of the produced current signals has also been reached. These results present an evaluation of the dynamic performance of this system under the proposed working conditions. It also shows the energy exchange with the grid.
Automated Learning of Hungarian Morphology for Inflection Generation and Morphological Analysis Gabor Szabo; Laszlo Kovacs
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2545

Abstract

The automated learning of morphological features of highly agglutinative languages is an important research area for both machine learning and computational linguistics. In this paper we present a novel morphology model that can solve the inflection generation and morphological analysis problems, managing all the affix types of the target language. The proposed model can be taught using (word, lemma, morphosyntactic tags) triples. From this training data, it can deduce word pairs for each affix type of the target language, and learn the transformation rules of these affix types using our previously published, lower-level morphology model called ASTRA. Since ASTRA can only handle a single affix type, a separate model instance is built for every affix type of the target language. Besides learning the transformation rules of all the necessary affix types, the proposed model also calculates the conditional probabilities of the affix type chains using relative frequencies, and stores the valid lemmas and their parts of speech. With these pieces of information, it can generate the inflected form of input lemmas based on a set of affix types, and analyze input inflected word forms. For evaluation, we use Hungarian data sets and compare the accuracy of the proposed model with that of state of the art morphology models published by SIGMORPHON, including the Helsinki (2016), UF and UTNII (2017), Hamburg, IITBHU and MSU (2018) models. The test results show that using a training data set consisting of up to 100 thousand random training items, our proposed model outperforms all the other examined models, reaching an accuracy of 98% in case of random input words that were not part of the training data. Using the high-resource data sets for the Hungarian language published by SIGMORPHON, the proposed model achieves an accuracy of about 95-98%.
High-Performance Design of a 4-Bit Carry Look-Ahead Adder in Static CMOS Logic Mehedi Hasan; Abdul Hasib Siddique; Abdal Haque Mondol; Mainul Hossain; Hasan U. Zaman; Sharnali Islam
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2582

Abstract

Design of a 4-bit Carry Look-Ahead (CLA) process in static CMOS logic has been presented. CLA architecture proposed in this work computes carry-out terms without using carry-propagate and carry-generate signals which are used in conventional static CMOS (C-CMOS) 4-bit CLA adder. Performance parameters of the proposed 4-bit CLA architecture have been simulated and validated by comparing with the conventional design using Cadence design toolset in 45 nm technology. The designs were compared in terms of average power consumption, propagation delay and power delay product (PDP). The proposed 4-bit CLA topology obtained 34.53 % improvement in speed, 4.84 % improvement in power consumption and 37.696 % improvement in PDP while the source voltage was 1.0 V. Hence, as per acquired simulation results, the proposed 4-bit CLA structure is proven to be an excellent alternative to the conventional design for data-path design in modern high-performance processors.Design of a 4-bit Carry Look-Ahead (CLA) process in static CMOS logic has been presented. CLA architecture proposed in this work computes carry-out terms without using carry-propagate and carry-generate signals which are used in conventional static CMOS (C-CMOS) 4-bit CLA adder. Performance parameters of the proposed 4-bit CLA architecture has been simulated and validated by comparing with the conventional design using Cadence design toolset in 45 nm technology. The designs were compared in terms of average power consumption, propagation delay and power delay product (PDP). The proposed 4-bit CLA topology obtained 26.67 % improvement in speed, 5.966 % improvement in power consumption and 31.06 % improvement in PDP while the source voltage was 1.0 V. Hence, as per acquired simulation results, the proposed 4-bit CLA structure is proven to be an excellent alternative to the conventional design for data-path design in modern high-performance processors.
Evaluation of Differential Evolution Algorithm with Various Mutation Strategies for Clustering Problems Pyae Pyae Win Cho; Thi Thi Soe Nyunt
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.2157

Abstract

Evolutionary Algorithms (EAs) based pattern recognition has emerged as an alternative solution to data analysis problems to enhance the efficiency and accuracy of mining processes. Differential Evolution (DE) is one rival and powerful instance of EAs, and DE has been successfully used for cluster analysis in recent years. Mutation strategy, one of the main processes of DE, uses scaled differences of individuals that are chosen randomly from the population to generate a mutant (trial) vector. The achievement of the DE algorithm for solving optimization problems highly relies on an adopted mutation strategy. In this paper, an empirical study was presented to investigate the effectiveness of six frequently used mutation strategies for solving clustering problems. The experimental tests were conducted on the most widely used data set for EAs based clustering, and the quality of cluster solutions and convergence characteristics of DE variants were evaluated. The obtained results pointed out that the mutation strategies that use the guidance information from the best solution mange to find more stable results whereas the random mutation strategies are able to find high quality solutions with slower convergence rate. This study aims to provide some information and insights to develop better DE mutation schemes for clustering.
PAPR reduction in OFDM system using combined MCS and DHMT precoding Mohd Danial Rozaini; Azlina Idris; Darmawaty Mohd Ali; Ezmin Abdullah
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.1767

Abstract

Orthogonal Frequency Division Multiplexing (OFDM) has become a preferable scheme for most high data rate wireless communication standards. However, the non-linear power amplifier effect experienced in the OFDM system has increases the peak-to-average power ratio (PAPR). This paper proposed a Median Codeword Shift (MCS) as a new solution to alleviate the effect of high PAPR. MCS takes advantage of the codeword structure and bit position changes through the manipulation of the codeword structure and permutation process to achieve a low PAPR value. Additionally, the enhanced version of MCS is also being proposed by merging MCS with the Discrete Hartley matrix transform (DHMT) precoding method to boost the PAPR reduction. Simulation results show that MCS is capable of minimizing PAPR of conventional OFDM with 24% improvement and at the same time outperform Selective Codeword Shift (SCS) with a 0.5 dB gap. A remarkable result was also achieved by MCS-DHMT with a 15.1% improvement without facing any bit error rate (BER) degradation.
Traffic characterization in a communications channel for monitoring and control in real-time systems Leonardo Serna-Guarin; Luis J. Morantes-Guzman; Edilson Delgado-Trejos; Miguel A. Becerra
Indonesian Journal of Electrical Engineering and Informatics (IJEEI) Vol 8, No 4: December 2020
Publisher : IAES Indonesian Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.52549/ijeei.v8i4.1695

Abstract

The response time for remote monitoring and control in real-time systems is a sensitive issue in device interconnection elements. Therefore, it is necessary to analyze the traffic of the communication system in pre-established time windows. In this paper, a methodology based on computational intelligence is proposed for identifying the availability of a data channel and the variables or characteristics that affect the performance and data transfer, which is made up of four stages: a) integration of a communication system with an acquisition module and a final control structure; b) communication channel characterization by means of traffic variables; and c) relevance analysis from the characterization space using SFFS (sequential forward oating selection); d) Channel congestion classification as Low or High using a classifier based on Naive Bayes algorithm. The experimental setup emulates a real process using an on/off remote control of a DC motor on an Ethernet network. The communication time between the client and server was integrated with the operation and control times, to study the whole response time. This proposed approach allows support decisions about channel availability, to establish predictions about the length of the time window when the availability conditions are unknown.

Page 1 of 2 | Total Record : 18