cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 17 Documents
Search results for , issue "2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)" : 17 Documents clear
Preliminary Testing of Hybrid Catalytic-Plasma Reactor for Biodiesel Production Using Modified-Carbon Catalyst Luqman Buchori; Istadi Istadi; Purwanto Purwanto; Anggun Kurniawan; Teuku Irfan Maulana
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (381.707 KB) | DOI: 10.9767/bcrec.11.1.416.59-65

Abstract

Preliminary testing of hybrid catalytic-plasma reactor for biodiesel production through transesterification of soybean oil with methanol over modified-carbon catalyst was investigated. This research focused on synergetic roles of non-thermal plasma and catalysis in the transesterification process. The amount of modified-carbon catalyst with grain size of 1.75 mm was placed into fixed tubular reactor within discharge zone. The discharge zone of the hybrid catalytic-plasma reactor was defined in the volume area between high voltage and ground electrodes. Weight Hourly Space Velocity (WHSV) of 1.85 h-1 of reactant feed was studied at reaction temperature of 65 oC and at ambient pressure. The modified-carbon catalyst was prepared by impregnation of active carbon within H2SO4 solution followed by drying at 100 oC for overnight and calcining at 300 oC for 3 h. It was found that biodiesel yield obtained using the hybrid catalytic-plasma reactor was 92.39% and 73.91% when using active carbon and modified-carbon catalysts, respectively better than without plasma. Therefore, there were synergetic effects of non-thermal plasma and catalysis roles for driving the transesterification process. 
Analysis of Chemical Reaction Kinetics Behavior of Nitrogen Oxide During Air-staged Combustion in Pulverized Boiler Jun-Xia Zhang; Jiang Feng Zhang
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (925.795 KB) | DOI: 10.9767/bcrec.11.1.431.100-108

Abstract

Because the air-staged combustion technology is one of the key technologies with low investment running costs and high emission reduction efficiency for the pulverized boiler, it is important to reveal the chemical reaction kinetics mechanism for developing various technologies of nitrogen oxide reduction emissions. At the present work, a three-dimensional mesh model of the large-scale four corner tangentially fired boiler furnace is established with the GAMBIT pre-processing of the FLUENT software. The partial turbulent premixed and diffusion flame was simulated for the air-staged combustion processing. Parameters distributions for the air-staged and no the air-staged were obtained, including in-furnace flow field, temperature field and nitrogen oxide concentration field. The results show that the air-staged has more regular velocity field, higher velocity of flue gas, higher turbulence intensity and more uniform temperature of flue gas. In addition, a lower negative pressure zone and lower O2 concentration zone is formed in the main combustion zone, which is conducive to the NO of fuel type reduced to N2, enhanced the effect of NOx reduction. 
Preparation and Characterization of Anadara Granosa Shells and CaCO3 as Heterogeneous Catalyst for Biodiesel Production Hadiyanto Hadiyanto; Sri Puji Lestari; Widayat Widayat
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (373.222 KB) | DOI: 10.9767/bcrec.11.1.402.21-26

Abstract

Nowadays, the use of homogenous catalyst has been gradually reduced for its operational reason. The homogenous catalyst leads in difficulty of separation after the process completed and the life cycle is shorter. Therefore, most of researches are introducing heterogenous catalyst for its substitution. This research was aimed to evaluate the use of shell of Anadara granosa and CaCO3 as source of CaO based catalyst through impregnation method. The preparation of the catalyst was started by decomposition of shells and CaCO3 at temperature of 800 oC for 3 hours, followed by impregnation at 70 oC for 4 hours and then calcined at 800 oC for 2 hours. The CaCO3 based catalyst gained high yield of biodiesel (94%) as compared to Anadara granoasa based catalyst (92%). The reusability study showed that these catalysts could be used until three times recycle with 40-60% yield of biodiesel. The CaO contents of catalyst decreased up to 90% after three times recycles. 
Application of Tin(II) Chloride Catalyst for High FFA Jatropha Oil Esterification in Continuous Reactive Distillation Column Ratna Dewi Kusumaningtyas; Imam Novrizal Aji; Hadiyanto Hadiyanto; Arief Budiman
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (519.088 KB) | DOI: 10.9767/bcrec.11.1.417.66-74

Abstract

The application of heterogeneous solid acid catalysts in biodiesel production has become popular and gained significant attention over the last few years. It is since these types of catalysts hold the benefits in terms of easy separation from the product, reusability of the catalyst, high selectivity of the reaction. They are also considered sustainable and powerful particularly in organic synthesis. This work studied the use of tin(II) chloride as solid Lewis acid catalyst to promote the esterification reaction of high Free Fatty Acid (FFA) jatropha oil in continuous reactive distillation column. To obtain the optimum condition, the influences of reaction time, molar ratio of the reactant, and catalyst were investigated. It was revealed that the optimum condition was achieved at the molar ratio of methanol to FFA at 1:60, catalyst concentration of 5%, and reaction temperature of 60°C with the reaction conversion of 90%. This result was significantly superior to the identical reaction performed using batch reactor. The esterification of high FFA jatropha oil using reactive distillation in the presence of tin(II) chloride provided higher conversion than that of Amberlyst-15 heterogeneous catalyst and was comparable to that of homogenous sulfuric acid catalyst, which showed 30 and 94.71% conversion, respectively. The esterification reaction of high FFA jatropha oil was subsequently followed by transesterification reaction for the completion of the biodiesel production. Transesterification was carried out at 60 °C, molar ratio of methanol to oil of 1:6, NaOH catalyst of 1%, and reaction time of one hour. The jatropha biodiesel product resulted from this two steps process could satisfy the ASTM and Indonesian biodiesel standard in terms of ester content (97.79 %), density, and viscosity. 
Application of Al/B/Fe2O3 Nano Thermite in Composite Solid Propellant Jingke Deng; Guoping Li; Lianhua Shen; Yunjun Luo
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (509.124 KB) | DOI: 10.9767/bcrec.11.1.432.109-114

Abstract

Hydroxyl-terminated polybutadiene (HTPB) propellant were prepared with different content of Al/B/Fe2O3 nano thermite, and the mechanical, thermal and energetic performances were studied. Al/B/Fe2O3 nano thermite exhibited good compatibility with HTPB and dioctyl sebacate (DOS) through differential scanning calorimetry (DSC) tests. Mechanical experiments show that the mechanical properties of HTPB propellant could be improved by the addition of a small quantity of Al/B/Fe2O3 nano thermite, compared with the absence of Al/B/Fe2O3 nano thermite. For example, with the addition of 3% Al/B/Fe2O3 nano thermite, the tensile strength and elongation of propellant had the increase of 15.3% and 32.1%, respectively. Thermal analysis indicated that the decomposition of ammonium perchlorate (AP) in HTPB propellant could be catalyzed by Al/B/Fe2O3 nano thermite, the high-temperature exothermic peak of AP was shifted to lower temperature by 70.8 °C when the content of Al/B/Fe2O3 nano thermite was 5%, and the heat released was enhanced by 70%. At the same time, the heat of explosion of HTPB propellant could also be enhanced by the addition of Al/B/Fe2O3 nano thermite. 
Reusability and Stability Tests of Calcium Oxide Based Catalyst (K2O/CaO-ZnO) for Transesterification of Soybean Oil to Biodiesel Istadi Istadi; Udin Mabruro; Bintang Ayu Kalimantini; Luqman Buchori; Didi Dwi Anggoro
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (356.738 KB) | DOI: 10.9767/bcrec.11.1.413.34-39

Abstract

This paper was purposed for testing reusability and stability of calcium oxide-based catalyst (K2O/CaO-ZnO) over transesterification reaction of soybean oil with methanol to produce biodiesel. The K2O/CaO-ZnO catalyst was synthesized by co-precipitation method of calcium and zinc nitrates followed by impregnation of potassium nitrate. The fresh and used catalysts were tested after regeneration. The catalysts were characterized by Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD), and BET Surface Area in order to compare the catalyst structure between the fresh and used catalysts. The catalyst testing in transesterification proses was carried out at following operating conditions, i.e. catalyst weight of 6 wt.%, oil to methanol mole ratio of 1:15, and temperature of 60 oC. In addition, metal oxide leaching of K2O/CaO-ZnO catalyst during reaction was also tested. From the results, the catalysts exhibited high catalytic activity (80% fatty acid methyl ester (FAME) yield after three-cycles of usage) and acceptable reusability after regeneration. The catalyst also showed acceptable stability of catalytic activity, even after three-cycles of usage. 
Preface, BCREC Vol. 11 No. 1 Year 2016 Istadi, Istadi
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (211.405 KB) | DOI: 10.9767/bcrec.11.1.441.v-vii

Abstract

DOI: 10.9767/bcrec.11.1.441.v-vii
Effect of Co and Mo Loading by Impregnation and Ion Exchange Methods on Morphological Properties of Zeolite Y Catalyst Didi Dwi Anggoro; Nur Hidayati; Luqman Buchori; Yayuk Mundriyastutik
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (441.259 KB) | DOI: 10.9767/bcrec.11.1.418.75-83

Abstract

Coal tar can be used as an alternative raw material for the production of liquid fuels, such as: gasoline and diesel through hydrogenation and cracking process. Hydrogenation and cracking process requires a catalyst which has metal components for hydrogenation reaction and acid components for cracking reaction. In this study, the Co/Zeolite Y and Co-Mo/Zeolite Y catalysts were prepared by impregnation and ion exchange methods. Characterizations of the catalysts were carried out by X-Ray Diffraction (XRD) and gravimetric acidity. The catalysts were tested for coal tar conversion to liquid fuel under various temperatures, amount of catalyst and hydrogen flow rates in a fixed bed flow reaction system. Liquid fuels products were analyzed by gas chromatography (GC). The XRD Spectra indicated that the addition of Co and Mo metals did not affect catalysts structure, however it alters the percentage of crystallinity. The addition of Co metal using impregnation method caused reduction in crystallinity, while the addition of Mo caused improvement of crystallinity. The Co-Mo/Zeolite Y catalyst with highest crystallinity was obtained by loading using ion exchange method. The addition of Co and Mo metals caused increasing acidity. However, the increasing composition of Co and Mo loaded on Zeolite Y catalyst decreased the yield of liquid fuels from coal tar. It can be concluded that the yields of liquid fuels and the composition of gasoline fractions from hydrocracking of coal tar were highly dependent on  acidity of the catalyst. 
Kinetic Modeling of C3H6 Inhibition on NO Oxidation over Pt Catalyst Muhammad Mufti Azis; Derek Creaser
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (658.085 KB) | DOI: 10.9767/bcrec.11.1.412.27-33

Abstract

Exhaust after treatment for lean burn and diesel engine is a complex catalytic system that consists of a number of catalytic units. Pt/Al2O3 is often used as a model Diesel Oxidation Catalyst (DOC) that plays an important role to facilitate oxidation of NO to NO2. In the present study, we proposed a detailed kinetic model of NO oxidation as well as low temperature C3H6 inhibition to simulate temperature-programmed reaction (TPR) data for NO oxidation over Pt/Al2O3. A steady-state microkinetic model based on Langmuir-Hinshelwood mechanism for NO oxidation was proposed. In addition, low temperature C3H6 inhibition was proposed as a result of site blocking as well as surface nitrite consumption. The model can explain the experimental data well over the studied temperature range. 
Controlled Synthesis of Silver Nanoparticles Using Double Reductants and Its Voltammetric Characteristics Study Yubo Duan; Zhihua Xu; Xiaochun Jiang
Bulletin of Chemical Reaction Engineering & Catalysis 2016: BCREC Volume 11 Issue 1 Year 2016 (April 2016)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (332.895 KB) | DOI: 10.9767/bcrec.11.1.433.115-119

Abstract

Constructing robust silver nanoparticles (AgNPs) with good shape and dispersibility is of particular interest in analytical applications. Herein, monodispersibility AgNPs with the average size of 20 nm have been successfully prepared via one-pot method using sodium borohydride and trisodium citrate as co-reductants. The introduction of sodium borohydride greatly accelerated the rate of nucleation, which can effectively solve the problem of broad size distribution. Both shape and dispersibility of AgNPs can be effectively adjusted by simple control of refluxing time or concentrations of the sodium borohydride. We also studied the voltammetric characteristics of the AgNPs using Ag/AgCl solid-state voltammetry. An intense and stable current peak at a low potential could be obtained, which could provide a unique advantage in analytical applications. 

Page 1 of 2 | Total Record : 17