cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 21 Documents
Search results for , issue "2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)" : 21 Documents clear
Studies on H2-Assisted Liquefied Petroleum Gas Reduction of NO over Ag/Al2O3 Catalyst Pratichi Singh; Deepak Yadav; Pooja Thakur; Jitendra Pandey; Ram Prasad
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1307.227-235

Abstract

Hydrocarbon-Selective catalytic reduction (HC-SCR) is one of the potential methods to remove NOx emissions from diesel engine, lean burn petrol engines and natural gas engines exhaust. Ag/Al2O3 is a good catalyst for HC-SCR of NOx under lean-burn conditions. Further, addition of small amount of H2 is effective for enhancing HC-SCR activity. This effect is unique to silver and to specific Ag/support combinations, namely, Ag/γ-Al2O3. Various HC reductants, such as: octane, decane, dodecane and propane, have been reported in the literatures. Only a single study on LPG as a reductant over Cu-ZSM catalyst was reported. There was no work reported on H2 assisted LPG over Ag/Al2O3 catalyst. Thus, this gap in the literature is filled with the present investigation of NO reduction over 2 wt.% Ag/Al2O3 catalyst using LPG reductant. The fresh and used catalyst was characterized by various techniques like low temperature N2-adsorption, XRD, XPS and SEM. There was practically no change in the characteristics of the fresh and used catalyst. Two different reductants of CO and LPG were compared for SCR of NO over the catalyst without and with H2-assisted. The experiments were performed in a fixed bed tubular flow reactor under the following conditions: 100mg catalyst; 0.13% NO, 2.5% LPG/CO, 1% H2, 10% O2, rest Ar; total flow rate 60 mL/min; temperature ambient 400 oC and pressure 1 atm. Around 100% conversion of NO was achieved using LPG reductant. Light off temperature of NO reduction significantly reduced by H2assisted LPG reductant. The maximum conversion of NO with CO was limited to 35.15% at temperature of 224 oC and above. Whereas, 97.79 % NO conversion was achieved at 365 oC with LPG reductant. While, the maximum conversions with H2-LPG and H2-CO reductants were 100 and 99.46% at 117 and 220 oC, respectively. Therefore, H2-LPG-SCR of NOx over 2 wt.% Ag/Al2O3 catalyst system can be used to get 100% reduction at low temperature. 
The Impact of Hydrogen Peroxide as An Oxidant for Solvent-free Liquid Phase Oxidation of Benzyl Alcohol using Au-Pd Supported Carbon and Titanium Catalysts Sarhan Sanaa Tareq; Mohd. Izham Saiman; Taufiq-Yap Yun Hin; Abdul Halim Abdullah; Umer Rashid
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1204.373-385

Abstract

The solvent free oxidation of benzyl alcohol was conducted employing Au and Pd supported catalysts, while utilizing hydrogen peroxide 35% (H2O2) as the oxidant, H2O2 is  very cheap, mild, and an environment friendly reagent, which produced water as the only by-product. Various proportions of Au-Pd catalysts on carbon and titanium oxide activated as supports were synthesized through the use of sol immobilization catalyst synthesis technique. Characterization of the synthesized catalysts was performed using X-Ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), Field Emission Scanning Electron Microscopy (FESEM), and Transmission Electron Microscopy (TEM). It was found that the synthesized Au-Pd/ activated carbon catalyst was  beneficial for the solvent free oxidation of benzyl alcohol after its containing high surface area measuring 871 m2g-1. Analysis of the TEM data and particle dimension revealed smaller and narrower particle size of 1 wt%. Thus, the distribution of Au-Pd/C was attained. Carbon-supported bimetallic catalysts presented a higher conversion compared to catalysts that are supported titanium oxide (TiO2) for for the oxidation reaction of benzyl alcohol. It was determined that this technique was a suitable process for catalyst synthesis with high selectivity, same distribution of the particle size and activations. 
Cu/Pd Bimetallic Supported on Mesoporous TiO2 for Suzuki Coupling Reaction Mothi Krishna Mohan; K. R. Sunajadevi; Nobi K Daniel; Soumya Gopi; Sugunan Sugunan; Nikhil Chandra Perumparakunnel
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1393.286-294

Abstract

Generally bimetallic catalysts are more superior to monometallic catalysts and provide a better platform for the development of novel catalysts with enhanced activity, selectivity, and stability. In the current work we have prepared Cu/Pd bimetallic supported on mesoporous TiO2 by hydrothermal method. The prepared system was characterized by various physico-chemical techniques such as XRD, TG-DTG, SEM, EDAX, BJH isotherm, and XPS. Thermal stability and complete electronic structure were identified from TG and XPS measurements respectively. The bimetallic system was found to be very active in Suzuki cross-coupling reaction using different substrates. The products were separated and purified by column chromatography and the resultant products were characterized thoroughly by 1H NMR, and FT-IR analysis. 
Triglycerides Hydrocracking Reaction of Nyamplung Oil with Non-sulfided CoMo/γ-Al2O3 Catalysts Rismawati Rasyid; Rahmaniah Malik; Heri Septya Kusuma; Achmad Roesyadi; Mahfud Mahfud
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.734.196-203

Abstract

The purpose of this research are to study the temperature influence in hydrocracking process of the nyamplung oil (Calophyllum inophyllum) using a non-sulfided CoMo/γ-Al2O3 catalyst and to develop a simple kinetic model in interpreting the data of hydrocracking products. The experiment was carried out in a pressurized batch reactor operated pressure up 30 bar. The CoMo catalyst supported with γ-Al2O3 was prepared through impregnation method without sulfidation process. The operating temperature varied from 200 to 350 oC. The results show that the non-sulfided CoMo/γ-Al2O3 catalysts, nyamplung oil triglycerides can converted into gasoil and gasoline-like hydrocarbons. The triglyceride hydrocracking reaction of nyamplung oil followed a several stages, i.e., hydrogenation, dehydrogenation, and cracking. Based on the compounds contained in liquid product, hydrocracking reaction was dominated by decarboxylation. The products obtained in hydrocracking process of nyamplung oil are classified to gasoil (C11-C18) and gasoline (C5-C10).  The triglycerides hydrocracking reaction of nyamplung oil was assumed by following a series reaction mechanism and a simple kinetic model used for determined the kinetics constants. The highest reaction conversion is 99.10% obtained at temperature of 350 °C for 160 minutes reaction time. 
Facile Synthesis and Characterization of Multi-Layer Graphene Growth on Co-Ni Oxide/Al2O3 Substrate Using Chemical Vapour Deposition May Ali; Suraya Abdul Rashid; Mohd Nizar Hamidon; Faizah Md Yasin
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1453.341-354

Abstract

The synthesis and characterization of multilayer graphene (MLG) growth on bimetallic Co-Ni oxide/Al2O3 substrate using chemical vapour deposition (CVD) were investigated. The synthesis of MLG was performed at a temperature range of 700-900 oC. Characterization was carried out using TGA, XRD, FESEM, HRTEM, EDX, XPS, FTIR, and Raman spectroscopy. The MLG growth on the bimetallic substrate was confirmed by XRD, FESEM, and HRTEM analysis. TGA and Raman spectroscopy analyses indicate the formation of thermally stable and high-quality MLG. The kinetic growth of MLG was investigated by varying the reaction temperature and monitoring the partial pressure of the ethanol (C2H5OH) as well as that of hydrogen. The data obtained were fitted to the Langmuir-Hinshelwood kinetic model for the estimation of the reaction rate constants at different temperatures. The results showed that the reaction rate constant increased with temperature and the apparent activation energy of 13.72 kJ.mol-1 was obtained indicating a relatively fast rate of MLG growth. The parity plot obtained for the comparison of the predicted and observed rate of C2H5OH consumptions showed an excellent agreement. This study is important for understanding the growth kinetics of MLG in order to develop appropriate measures that can control the production of MLG thin films for use in the electronic industries. 
Electrochemical Study of Copper Ferrite as a Catalyst for CO2 Photoelectrochemical Reduction Kaykobad Md. Rezaul Karim; Huei Ruey Ong; Hamidah Abdullah; Abu Yousuf; Chin Kui Cheng; Mohd. Maksudur Rahman Khan
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1317.236-244

Abstract

In this work, p-type CuFe2O4 was synthesized by sol gel method. The prepared CuFe2O4 was used as photocathode catalyst for photoelectrochemical (PEC) CO2 reduction. The XRD, UV-Visible Spectroscopy (UV-Vis), and Mott-Schottky (MS) experiments were done to characterize the catalyst. Linear sweep voltammetry (LSV) was employed to evaluate the visible light (λ>400 nm) effect of this catalyst for CO2 reduction.  The band gap energy of the catalyst was calculated from the UV-Vis and was found 1.30 eV. Flat band potential of the prepared CuFe2O4 was also calculated and found 0.27 V versus Ag/AgCl. Under light irradiation in the CO2-saturated NaHCO3 solution, a remarkable current development associated with CO2 reduction was found during LSV for the prepared electrode from onset potential -0.89 V with a peak current emerged at -1.01 V (vs Ag/AgCl) representing the occurrence of CO2 reduction reaction. In addition, the mechanism of PEC was proposed for the photocathode where the necessity of a bias potential in the range of 0.27 to ~ -1.0 V vs Ag/AgCl was identified which could effectively inhibit the electron-hole (e-/h+) recombination process leading to an enhancement of CO2 reduction reactions. 
Effects of Platinum and Palladium Metals on Ni/Mg1-xZrxO Catalysts in the CO2 Reforming of Methane Faris Jasim Abdulridha Al-Doghachi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1656.295-310

Abstract

Nickel, palladium, and platinum catalysts (1 wt.% each) supported on MgO and MgZrO to prepare Pt,Pd,Ni/Mg1-xZrxO catalysts (where x = 0, 0.03, 0.07, and 0.15), were synthesized by using co-precipitation method with K2CO3 as the precipitant. X-ray diffraction (XRD), X-ray fluorescence (XRF), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), transmission electron microscopy (TEM), H2-temperature programmed reduction (H2-TPR), and thermo gravimetric analysis (TGA) were employed to observe the characteristics of the prepared catalysts. The Pt,Pd,Ni/Mg0.85Zr0.15O showed the best activity in dry reforming of methane (DRM) with 99 % and 91 % for CO2 and CH4 conversions, respectively and 1.28 for H2/CO ratio at temperature 900 °C and 1:1 of CH4:CO2 ratio. The stability of Pt,Pd,Ni/Mg0.85Zr0.15O catalyst in the presence and absence of low stream 1.25 % oxygen was investigated. Carbon formation and amount in spent catalysts were examined by TEM and TGA in the presence of stream oxygen. The results showed that the amount of carbon was suppressed and negligible coke formation (less than 3 %) was observed. Several effects were observed with ZrO2 use as a promoter in the catalyst. Firstly, the magnesia cubic phase stabilized. Secondly, thermal stability and support for basicity increased. Thirdly, carbon deposition and the reducibility of Ni2+, Pd2+, and Pt2+ ions decreased. 
Highly Efficient Synthesis of 1-Thioamidoalkyl-2-naphthols and 14-Aryl-14H-dibenzo[a,j]xanthenes using a Novel Ionic Liquid: Catalyst Preparation, Characterization and Performing the Reactions Atefeh Saadat; Abdolkarim Zare; Fatemeh Jamadi; Maasoomeh Abdolalipour-Saretoli
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1280.204-212

Abstract

In this work, a novel Brønsted acidic ionic liquid namely triethylaminium-N-sulfonic acid trifluoroacetate {[TEASA][TFA]} has been synthesized by the reaction of NEt3 with ClSO3H, and then with CF3CO2H. The ionic liquid has been characterized by studying its spectroscopic data (1H and 13C NMR, FT-IR, and mass spectra). Afterward, it has been utilized as a highly effective and general catalyst to promote the following organic reactions in solvent-free conditions: (i) the production of 1-thioamidoalkyl-2-naphthols from arylaldehydes, 2-naphthol and thioacetamide, and (ii) the preparation of 14-aryl-14H-dibenzo[a,j]xanthenes from arylaldehydes and 2-naphthol. It is noteworthy that [TEASA][TFA] has catalyzed the reactions under milder conditions relative to most of the reported methods. Moreover, it afforded the both products in higher yields with respect to most of the previous works. 
Kinetic, Mechanistic, and Thermodynamic Studies for Oxidation of L-Alanine by Alkaline Sodium Periodate in Presence of Os(VIII) in its Nano Concentration Range as Homogenous Catalyst Madhu Gupta; Amrita Srivastava; Sheila Srivastava
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1583.355-364

Abstract

The kinetics and mechanism of homogenously Os(VIII) catalysed oxidation of L-alanine (L-ala) by alkaline sodium periodate in temperature range 30 to 45°C have been studied. The involvement of free radicals was observed in the reactions. The oxidation products were acetaldehyde and IO3-, identified by spot test and spectroscopic studies. The stoichiometry between [L-ala]: IO4- is 1:2. The reaction show negligible effect of mercuric acetate and ionic strength of medium. The experimental results show first order in oxidant [NaIO4] and negative effect of [OH-]. The order in [Os(VIII)] as well as L-alanine was unity. A mechanism involving the formation of complex between L-alanine and Os(VIII) was proposed. The reaction constants concerned in the different steps of mechanism were calculated at different temperature. The activation parameters for the slow step of mechanism were computed and discussed. The thermodynamic quantities were also calculated for the reaction. 
Fe/Indonesian Natural Zeolite as Hydrodeoxygenation Catalyst in Green Diesel Production from Palm Oil Riandy Putra; Witri Wahyu Lestari; Fajar Rakhman Wibowo; Bambang Heru Susanto
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 2 Year 2018 (August 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.13.2.1382.245-255

Abstract

The Petroleum diesel-based fossil fuel remains the primary source of energy consumption in Indonesia. The utilization of this unrenewable fuel depletes fossil fuels; thus, an alternative, renewable fuel, such as one based on biohydrocarbon from biomass-green diesel-could be an option. In this work, green diesel was produced through the hydrodeoxygenation from palm oil and processed in a batch-stirred autoclave reactor over natural zeolite (NZ) and NZ modified with 3 wt.% Fe metal (Fe/NZ) as heterogeneous catalyst. NZ showed high crystallinity and suitability to the simulated pattern of the mordenite and clinoptilolite phases according to X-ray diffraction (XRD) analysis. The presence of Fe metal was further confirmed by XRD, with an additional small diffraction peak of Fe0 that appeared at 2θ = 44-45°. Meanwhile, NZ and Fe/NZ were also characterized by Scanning electron microscopy (SEM) with Energy Dispersive X-ray (EDX), X-ray Fluorescence (XRF), and Surface Area Analyzer (SAA). The obtained materials were tested for the conversion of palm oil into diesel-range hydrocarbons (C15-C18) under conditions of 375 °C and 12 bar H2 for 2 h. NZ and Fe/NZ produced a liquid hydrocarbon with straight-chain (C15-C18) alkanes as the most abundant products. Based on Gas Chromatography-Mass Spectrometry (GC-MS) measurement, a higher conversion of palm oil into diesel-like hydrocarbons reached more than 58% and 89%, when NZ and Fe modified NZ (Fe/NZ), respectively were used as catalysts. 

Page 1 of 3 | Total Record : 21