cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 21 Documents
Search results for , issue "2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)" : 21 Documents clear
Effect of Incorporating TiO2 Photocatalyst in PVDF Hollow Fibre Membrane for Photo-Assisted Degradation of Methylene Blue Norashima Abdullah; Bamidele Victor Ayodele; Wan Nurdiyana Wan Mansor; Sureena Abdullah
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (644.076 KB) | DOI: 10.9767/bcrec.13.3.2909.588-591

Abstract

A rapid growth in populations, living standards and industries has become a key contribution to water pollution. Clean water is an important resource for life, sustainable development and ecosystems. This study therefore investigates the photocatalytic degradation of an organic pollutant (methylene blue) using PVDF/TiO2 membrane. The main objective of the study is to determine the synergistic effect of incorporating TiO2 photocatalyst into the PVDF membrane on the mineralization of the organic pollutants. The TiO2 photocatalyst was characterized using Ultraviolet Visible Spectroscopy (UV-Vis), Scanning Electron Microscopy (SEM), Brunauer, Emmettt, and Teller (BET), and X-ray Diffraction (XRD) techniques. While the fabricated PVDF/TiO2 hollow fibre membranes were then characterized by scanning electron microscopy (SEM) and contact angle. The performance of the membrane was evaluated by photodegradation of methylene blue. The degradation study revealed that both the undoped PVDF and the TIO2 doped PVDF membrane were capable of degrading methylene blue. The performance of the membrane can be ranked as follows 9 wt% TiO2/PVDF > 6 wt% TiO2/PVDF > 3 wt% TiO2/PVDF > undoped PVDF showing the synergistic effect of incorporating the TiO2 photocatalyst into the PVDF membrane.  The kinetics data of obtained from the rate of degradation of the methylene blue fitted well into first order kinetic data with apparent kinetic constants of 0.0591, 0.0295, 0.0188, and 0.0100 obtained using pure membrane, undoped PVDF, 3 wt% TiO2/PVDF, 6 wt% TiO2/PVDF, and 9 wt% TiO2/PVDF, respectively.
Enhanced Visible-Light-Driven Photocatalytic Activity of ZnAl Layered Double Hydroxide by Incorporation of Co2+ Deyang Li; Lihui Fan; Min Qi; Yanming Shen; Dongbin Liu; Shifeng Li
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (630.276 KB) | DOI: 10.9767/bcrec.13.3.2168.502-511

Abstract

Co-doped ZnAl layered double hydroxides (LDH) were papered by coprecipitation. The prepared samples were characterized by multiple techniques including X-ray Diffraction (XRD), Brunauer−Emmett−Teller (BET) surface area, Scanning Electronic Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray Photoelectron Spectroscopy (XPS) and UV−Vis Diffuse-Reflectance Spectroscopy (UV−Vis DRS). The incorporation of Co2+ into the ZnAl LDH sheets as CrO6 octahedron forms a new  energy level which contributes for the excitation of electrons under visible light. The doped Co2+ at a reasonable content also serves as photo-generated charges separator and improves the visible light photocatalytic activity of ZnAl LDH. A degradation mechanism based on the hydroxyl radical as the active species was proposed. 
Impact of Testing Temperature on the Structure and Catalytic Properties of Au Nanotubes Composites Anastassiya A. Mashentseva; Maxim V. Zdorovets; Daryn B. Borgekov
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (655.88 KB) | DOI: 10.9767/bcrec.13.3.2127.405-411

Abstract

In the paper, the catalytic activity of composites based on gold nanotubes and ion track membranes was studied using bench reaction of the p-nitrophenol (4-NP) reduction in the temperature range of 25-40 °C. The efficiency of the prepared catalysts was estimated on the rate constant of the reaction and by conversion degree of 4-NP to p-aminophenol (4-AP). The comprehensive evaluation of the structure was performed by X-ray diffraction and scanning electron microscopy. A decreasing of the composites activity was observed when the reaction were carried out at the temperature over 35 °C, due to an increased average crystallite size from 7.31±1.07 to 10.35±3.7 nm (after 1st run). In temperature range of 25-35 °C the efficiency of the composite catalyst was unchanged in 3 runs and decreases by 24-32 % after the 5th run. At the high temperature of 40 °C after the 5th run the composite become completely  catalytically inert. 
The Effect of Aluminum Source on Performance of Beta-Zeolite as a Support for Hydrocracking Catalyst Mina Hadi; Hamid Reza Aghabozorg; Hamid Reza Bozorgzadeh; Mohammad Reza Ghasemi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (570.975 KB) | DOI: 10.9767/bcrec.13.3.2570.543-552

Abstract

In this paper, three different kinds of aluminum sources (sodium aluminate, aluminum sulfate and aluminum isopropylate) were used for preparing of nano beta-zeolite. The as synthesized zeolites were mixed with the as prepared amorphous silica-alumina to produce the supports for hydrocracking catalyst. The prepared supports were used for preparation of NiMo/silica alumina-nano beta-zeolite by impregnation method. The influence of the aluminum source for preparation of beta-zeolite on the performance of the prepared catalysts has been studied. The samples were thoroughly characterized by X-Ray diffraction method (XRD), field emission-scanning electron microscopy (FE-SEM), N2 adsorption-desorption isotherms (BET), temperature programmed desorption (TPD) and temperature programmed reduction (TPR) methods. The catalysts performance was evaluated by vacuum gas oil (VGO) hydrocracking at 390 oC in a fixed bed reactor. The XRD patterns showed that the beta-zeolite samples obtained from the present methods were pure and highly crystalline and the crystal size of the prepared zeolites were in nanometer scale. Crystallite size of nano beta-zeolite synthesized by aluminum isopropylate [Al(iPrO)3] was smaller than those of prepared by the other aluminum sources. The catalyst containing this zeolite with higher surface area (231 m2/g) and more available acid sites (1.66 mmol NH3/g) possessed higher activity and selectivity to gas oil (71.9 %). 
Liquefaction Behaviors of Oil Palm Frond and Bamboo in 1-Butyl-3-Methylimidazolium Chloride Zhong Sheng Tai; Mohd Asmadi; Noorhalieza Ali
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (317.179 KB) | DOI: 10.9767/bcrec.13.3.1805.447-455

Abstract

Oil palm and bamboo are two of the most widely used biomass in the world nowadays as they can be converted into many valuable products. However, they are very difficult to be hydrolyzed and converted into other products because of their tight and strong hydrogen bonding between the lignin and polysaccharides. Ionic liquid (IL) is said to be the most ideal solvent to dissolve those biomass. Thus, in this research, 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]) was chosen to liquefy oil palm frond (OPF) and bamboo. The objective of this research was to compare the reaction behaviors of OPF and bamboo in [BMIM][Cl] at different treatment time. OPF and bamboo were heated at 120 °C for 2-24 hours under atmospheric pressure. Two fractions were obtained, namely [BMIM][Cl]-soluble and -nonsoluble. The non-soluble fractions were characterized using TGA, FTIR, XRD and FESEM while the soluble fractions were analyzed using HPLC. Based on the results obtained from the analyses, the effectiveness of [BMIM][Cl] in dissolving OPF was higher than bamboo as it was made up of less complex and compact cell wall structure. This structure allowed the diffusion of [BMIM][Cl] into the interior of OPF more easily to break down the hydrogen bonding network. Holocelluloses and lignin of OPF solubilized into [BMIM][Cl] more rapidly due to the greater distortion in hydrogen bonding network of the cell wall with the increase in treatment time compared to bamboo. Moreover, the mono-sugars of OPF were formed much easily than bamboo after short period (2 hours) of treatment. 
A Straightforward Selective Acylation of Phenols over ZSM-5 towards Making Paracetamol Precursors Robby Roswanda; Alfhons Daniel Sirampun; Rino Rakhmata Mukti; Didin Mujahidin
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (729.958 KB) | DOI: 10.9767/bcrec.13.3.2856.573-587

Abstract

Commercially available ZSM-5 was minimally treated as the catalyst to selectively acylate phenols. The ZSM-5 was simply immersed in ammonium nitrate in order to fill the pores with Brönsted acid to concentrate the catalytic reactions inside the pores. The reactions were carried out in liquid phase at 383 K. Acetic acid and propionic acid were chosen as the acyl substrate. Gas chromatography reveals two products which are phenyl acetate and almost exclusively para-hydroxyacetophenone meaning no ortho product observed. This para selectivity can be attributed to the pores of ZSM-5 where the reaction is assumed to be happening via intermolecular reaction. It is a relatively straightforward method in making para-hydroxyacetophenone which is known as paracetamol precursor. 
Green Biofuel Production via Catalytic Pyrolysis of Waste Cooking Oil using Malaysian Dolomite Catalyst Raja Mohamad Hafriz Raja Shahruzzaman; Salmiaton Ali; Robiah Yunus; Taufiq Yap Yun-Hin
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (20.814 KB) | DOI: 10.9767/bcrec.13.3.1956.489-501

Abstract

Malaysian Dolomite has shown potential deoxygenation catalyst due to high capacity in removing oxygen compound and produce high quality of biofuel with desirable lighter hydrocarbon (C8-C24). The performance of this catalyst was compared with several commercial catalysts in catalytic pyrolysis of Waste Cooking Oil. Calcination at 900 °C in N2 produced catalyst with very high activity due to decomposition of CaMg(CO3)2 phase and formation of MgO-CaO phase. The liquid product showed similar chemical composition of biofuel in the range of gasoline, kerosene and diesel fuel. Furthermore, Malaysian Dolomite showed high reactivity with 76.51 % in total liquid hydrocarbon and the ability to convert the oxygenated compounds into CO2, CO, CH4, H2, hydrocarbon fuel gas, and H2O. Moreover, low acid value (33 mg KOH/g) and low aromatic hydrocarbon content were obtained in the biofuel. Thus, local calcined carbonated material has a potential to act as catalyst in converting waste cooking oil into biofuel. 
Highly Sensitive Electrocatalytic Determination of Formaldehyde Using a Ni/Ionic Liquid Modified Carbon Nanotube Paste Electrode Ebrahim Zarei; Mohammad Reza Jamali; Farideh Ahmadi
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (769.271 KB) | DOI: 10.9767/bcrec.13.3.2341.529-542

Abstract

In this study, ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate was applied as additives to fabricate a novel ionic liquid/carbon nanotube paste electrode (IL/CNPE). This electrode was characterized by electrochemical impedance spectroscopy and cyclic voltammetry. Results showed that the electron transfer rate and reversibility of the electrode were increased by the ionic liquid. The morpho-logy of prepared IL/CNPE was studied by scanning electron microscopy. Nickel/ionic liquid modified carbon nanotube paste electrode (Ni/IL/CNPE) was also constructed by immersion of the IL/CNPE in nickel sulfate solution. Ionic liquid showed significant effect on the accumulation of nickel species on the surface of the electrode. Also, the values of electron transfer coefficient, charge-transfer rate constant and electrode surface coverage for Ni(II)/Ni(III) redox couple of the Ni/IL/CNPE were found to be 0.32 and 2.37×10-1 s-1 and 2.74×10-8 mol.cm-2, respectively. The Ni/IL/CNPE was applied successfully to highly efficient electrocatalytic oxidation of formaldehyde in alkaline medium. The effects of various factors on the efficiency of electrocatalytic oxidation of formaldehyde were optimized. Under the optimized condition, cyclic voltammetry of formaldehyde at the modified electrode exhibited two linear dynamic ranges in the concentration ranges of 7.00×10-6 to 9.60×10-5 mol.L-1 and 9.60×10-5 to 32.00×10-3 mol.L-1 with excellent detection limit of 9.50×10-7 mol.L-1 (3σ/slope), respectively. Also, the method was successfully applied for formaldehyde measurement in real sample. 
An Efficient Synthesis of 1,8-Dioxo-Octahydroxanthenes Derivatives Using Heterogeneous Ce-ZSM-11 Zeolite Catalyst Rameshwar R. Magar; Ganesh T. Pawar; Sachin P. Gadekar; Machhindra Karbhari Lande
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (107.633 KB) | DOI: 10.9767/bcrec.13.3.2062.436-446

Abstract

The Ce-ZSM-11 zeolite has been used as an efficient catalyst for the one pot synthesis of 1,8-dioxo-octahydroxanthene derivatives from aromatic aldehyde and 5,5-dimethyl-cyclohexane-1,3-dione under reflux condition. The catalyst was characterized by Powder X-ray diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive Spectroscopy (EDS), Fourier Transform Infrared Spectroscopy (FTIR), Brunauer-Emmer-Teller (BET) surface area analysis, and Temperature Programmed Desorption (TPD) techniques. This method provides several advantageous such as use of inexpensive catalyst, simple work-up procedure, high yield of desired product and reusability of catalyst. 
Catalytic Conversion of Residual Palm Oil in Spent Bleaching Earth (SBE) By HZSM-5 Zeolite based-Catalysts Mohd Lukman Musa; Ramli Mat; Tuan Amran Tuan Abdullah
Bulletin of Chemical Reaction Engineering & Catalysis 2018: BCREC Volume 13 Issue 3 Year 2018 (December 2018)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (17.527 KB) | DOI: 10.9767/bcrec.13.3.1929.456-465

Abstract

Bleaching earth is used to remove colour, phospholipids, oxidized products, metals and residual gums in the palm oil process refinery. Once adsorption process end, the spent bleaching earth (SBE) which contains approximately 20-40 wt. % of the adsorbed oil was usually disposed to landfills. The oil content in SBE was recovered by catalytic cracking using transition metal (Cu, Zn, Cr, and Ni) doped HZSM-5 zeolite in a batch reactor (pyrolysis zone) and fixed bed reactor (catalyst bed). The 5 wt. % of each metallic was introduced in HZSM-5 zeolite using incipient wetness impregnation method. The main objective of this study was to investigate the performance of modified HZSM-5 zeolite for cracking of residual oil in SBE. The physicochemical properties of the catalysts were characterized    using XRD, FTIR, Nitrogen adsorption, and TPD-NH3.  Liquid biofuel obtained from cracking was analyzed by GC-MS. The incorporation of metallic loaded on HZSM-5 zeolite has reduced the surface area of the catalyst that gives a significant impact to the catalytic behavior. The Ni/HZSM-5 zeolite exhibited the highest yields of alkenes as compared to others but slightly decreases the yield of alkanes whereas in contrast with the Cr/HZSM-5, the obtained alkanes were found higher than that of alkenes. In addition, the Cr/HZSM-5 and Ni/HZSM-5 favored the conversion of polycyclic aromatics to mono-aromatics, whereas parent HZSM-5 catalyst favored the formation of poly-aromatics. These results indicated that the metal loaded on HZSM-5 can promote the cracking of heavy fractions to lighter hydrocarbon thus can be used for cracking oil in SBE. 

Page 1 of 3 | Total Record : 21