cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 27 Documents
Search results for , issue "2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)" : 27 Documents clear
A Green Synthesis of Polylimonene Using Maghnite-H+, an Exchanged Montmorillonite Clay, as Eco-Catalyst Hodhaifa Derdar; Mohammed Belbachir; Amine Harrane
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (492.834 KB) | DOI: 10.9767/bcrec.14.1.2692.69-78

Abstract

A new green polymerization technique to synthesis polylimonene (PLM) is carried out in this work. This technique consists of using Maghnite-H+ as eco-catalyst to replace Friedel-Crafts catalysts which are toxics. Maghnite-H+ is a montmorillonite silicate sheet clay which is prepared through a simple exchange process. Polymerization experiments are performed in bulk and in solution using CH2Cl2 as solvent. Effect of reaction time, temperature and amount of catalyst is studied, in order to find the optimal reaction conditions. The polymerization in solution leads to the best yield (48.5%) at -5°C for a reaction time of 6 h but the bulk polymerization, that is performed at 25°C, remains preferred even if the yield is lower (40.3%) in order to respect the principles of a green chemistry which recommend syntheses under mild conditions, without solvents and at room temperature. The structure of the obtained polymer (PLM) is confirmed by FT-IR and Nuclear Magnetic Resonance of proton (1H-NMR). The glass transition temperature (Tg) of the polylimonene is defined using Differential Scanning Calorimetry (DSC) and is between 113°C and 116°C. The molecular weight of the obtained polymer is determined by Gel Permeation Chromatography (GPC) analysis and is about 1360 g/mol. Copyright © 2019 BCREC Group. All rights reserved 
Facile Synthesis of Ag3PO4 Photocatalyst with Varied Ammonia Concentration and Its Photocatalytic Activities For Dye Removal Febiyanto Febiyanto; Agus Soleh; Muhammad Sofi Khoerul Amal; Mohammad Afif; Sukma Sewiji; Anung Riapanitra; Uyi Sulaeman
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (243.707 KB) | DOI: 10.9767/bcrec.14.1.2549.42-50

Abstract

The highly active photocatalyst of Ag3PO4 could be synthesized under ammonia solution using the facile co-precipitation method with the starting material of AgNO3 and Na2HPO4.12H2O.  The variation of ammonia concentration was designed at 0.00, 0.05, 0.15, and 0.30 M. The products were characterized using X-ray diffraction, UV-diffuse reflectance spectroscopy, and scanning electron microscopy. The photocatalytic activities were evaluated using the Rhodamine B degradation under blue light irradiation.  The effect of calcination, pH condition, and visible light source irradiation was carried out in the experiment. The highest photocatalytic activity was found in the sample prepared using the addition of ammonia solution at the concentration of 0.05 M. This photocatalytic activity was 4.13 times higher compared to the Ag3PO4 prepared without the ammonia. The effective condition of photocatalytic activity was achieved at the sample prepared without calcination, degradation at pH of 7 and under blue light irradiation. 
Influence of Phosphoric Acid Modification on Catalytic Properties of γ-χ Al2O3 Catalysts for Dehydration of Ethanol to Diethyl Ether Mutjalin Limlamthong; Nithinart Chitpong; Bunjerd Jongsomjit
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (35.525 KB) | DOI: 10.9767/bcrec.14.1.2436.1-8

Abstract

In this present work, diethyl ether, which is currently served as promising alternative fuel for diesel engines, was produced via catalytic dehydration of ethanol over H3PO4-modified g-c Al2O3 catalysts. The impact of H3PO4 addition on catalytic performance and characteristics of catalysts was investigated. While catalytic dehydration of ethanol was performed in a fixed-bed microreactor at the temperature ranging from 200ºC to 400ºC under atmospheric pressure, catalyst characterization was conducted by inductively coupled plasma (ICP), X-ray diffraction (XRD), N2 physisorption, temperature-programmed desorption of ammonia (NH3-TPD) and thermogravimetric (TG) analysis. The results showed that although the H3PO4 addition tended to decrease surface area of catalyst resulting in the reduction of ethanol conversion, the Al2O3 containing 5 wt% of phosphorus (5P/Al2O3) was the most suitable catalyst for the catalytic dehydration of ethanol to diethyl ether since it exhibited the highest catalytic ability regarding diethyl ether yield and the quantity of coke formation as well as it had similar long-term stability to conventional Al2O3 catalyst. The NH3-TPD profiles of catalysts revealed that catalysts containing more weak acidity sites were preferred for dehydration of ethanol into diethyl ether and the adequate promotion of H3PO4 would lower the amount of medium surface acidity with increasing catalyst weak surface acidity. Nevertheless, when the excessive amount of H3PO4 was introduced, it caused the destruction of catalysts structure, which resulted in the catalyst incapability due to the decrease in active surface area and pore enlargement.   
Fischer-Tropsch Synthesis over Unpromoted Co/ɣ-Al2O3 Catalyst: Effect of Activation with CO Compared to H2 on Catalyst Performance Phathutshedzo Rodney Khangale; Reinout Meijboom; Kalala Jalama
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (588.815 KB) | DOI: 10.9767/bcrec.14.1.2519.35-41

Abstract

The effect of activating Co/Al2O3 catalyst by diluted CO or H2 on catalyst performance for Fischer-Tropsch reaction was investigated. The catalyst was prepared by incipient wetness impregnation of the support and characterized using BET N2 physisorption, SEM, and XRD analyses. The reduction behavior of the catalyst in presence of CO and H2 individually was evaluated using TPR analyses. The data reveal that CO activates Co/Al2O3 catalyst at a lower temperature than H2 and produces a catalyst with higher rate for liquid product formation. It also leads to higher methane selectivity probably due to some cobalt carbide formation. 
Preparation of Metal-Free Nitrogen-Doped Carbon Material and Its Catalytic Performance Xuan Wang; Lei Yang; Ke-ying Cai; Ying Mei Zhou; Peng Wang; Ming Song
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (16.896 KB) | DOI: 10.9767/bcrec.14.1.2593.105-111

Abstract

Nitrogen-doped carbon materials (NCMs) were prepared via hydrothermal treatment together with pyrolysis under nitrogen atmosphere by using melamine as nitrogen source and sucrose as carbon source. The NCMs were characterized by X-ray diffraction (XRD), laser Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The results showed that nitrogen species were successfully doped into NCMs in the formation of pyridinic N, pyrrolic N, graphitic N, and oxidized N. With the temperature of pyrolysis increasing, the total amount of nitrogen species decreased, while the proportion of graphitic N increased. The catalytic performance was investigated by the reduction of p-nitrophenol with excessive KBH4 at 30 ℃. The reaction rate constant can reach 1.06 min-1 for NCM-800. The NCM-800 has good stability, which can be used for 8 cycles without obvious deactivation. 
Kinetic of Adsorption Process of Sulfonated Carbon-derived from Eichhornia crassipes in the Adsorption of Methylene Blue Dye from Aqueous Solution Mukhamad Nurhadi; Iis Intan Widiyowati; Wirhanuddin Wirhanuddin; Sheela Chandren
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1528.636 KB) | DOI: 10.9767/bcrec.14.1.2548.17-27

Abstract

The evaluation of kinetic adsorption process of sulfonated carbon-derived from Eichhornia crassipes in the adsorption of methylene blue dye from aqueous solution has been carried out. The sulfonated carbon-derived from E. crassipes (EGS-600) was prepared by carbonation of E. crassipes powder at 600 °C for 1 h, followed by sulfonation with concentrated sulfuric acid for 3 h. The physical properties of the adsorbents were characterized by using Fourier transform infrared spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and nitrogen adsorption-desorption studies. Adsorption study using methylene blue dye was carried out by varying the contact time and initial dye concentration for investigated kinetics adsorption models. The effect of varying temperature was used to determine the thermodynamic parameter value of ΔG, ΔH, and ΔS. The results showed that the equilibrium adsorption capacity was 98% when EGS-600 is used as an adsorbent. The methylene blue dye adsorption onto adsorbent takes place spontaneity and follows a pseudo-second-order adsorption kinetic model. 
Design of a Synthetic Zinc Oxide Catalyst over Nano-Alumina for Sulfur Removal by Air in a Batch Reactor Amer T. Nawaf; Aysar Talib Jarullah; Layth T. Abdulateef
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (497.781 KB) | DOI: 10.9767/bcrec.14.1.2507.79-92

Abstract

Owing to the environmental regulations with respect to sulfur content and continuing challenges of finding a suitable catalyst of such impurity, a driving force for the development of more efficient technologies a deep research on new oxidative catalysts is considered an important issue in fuel quality improvement. Thus, the present study shows a novel percent of nano-catalyst with 18% zinc oxide (ZnO) of active component over nano-alumina that has not been reported in the public domain for sulfur removal from kerosene fuel by air (oxidative desulfurization (ODS) method). Where, such percent of the active component on the nano-alumina helps to add one or two atoms of oxygen to sulfur content in the kerosene. The nano-catalyst (ZnO/nano-alumina-particles composite) is prepared by precipitation of zinc oxide and loaded over nano-alumina in one-step. The activity of the prepared catalyst was tested utilizing ODS process of kerosene fuel by air in a batch reactor. A set of experiments were conducted with a wide range of operating conditions, where the reaction temperature was ranged from 150 to 190ºC, the reaction time from 30 to 50 min and the catalyst weight from 0.4 to 1 g. The experimental results showed that the chemical nature of zinc oxides showed higher conversion (70.52%) at reaction temperature of 190 ºC, reaction time of 50 min, and 1 g catalyst weight used in the batch reactor. A kinetic model related to the sulfur removal from kerosene via ODS process in the batch reactor was also investigated in this study for the purpose of estimating the best kinetic parameters of the relevant reactions. The results showed that the prepared catalyst (ZnO over nano-alumina) can be applied confidently to reactor design, operation and control in addition to improve the fuel quality. Following the kinetic model of ODS process, a very well agreement between the experimental and predicted results is obtained. Copyright © 2019 BCREC Group. All rights reserved 
Recyclable Nanocrystalline Copper Based on MoO3/SiO2 as an Efficient Catalyst for Acylation of Amines Sharda P. Dagade; Jaymala M. Deshmukh
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (72.253 KB) | DOI: 10.9767/bcrec.14.1.2111.93-104

Abstract

Various loadings of copper supported on MoO3/SiO2 (CMS) were prepared by sol-gel method and used for the synthesis of substituted benzimidazole. Further it was characterized by using X‐ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Transmission Electron Microscopy (TEM), and acidity measurement by potentiometric method. XRD results indicated that Cu is present on the support primarily as CuO. The SEM and TEM results showed dispersion of cubic CuO nanoparticles on the surface. These mixed oxides were studied for the acylation of o-phenylene diamine with acetic acid in liquid phase. 10 wt. % CMS gave best results at 110 ºC with 94.81 % conversion of o-phenylene diamine and 100 % selectivity of substituted benzimidazole. Different parameters were studied for optimization of acylation, such as: temperature, acylating agents, solvents, amount of catalyst, and different catalysts. The CMS catalyst could also be recovered and reused at three times without any discernible decrease in its catalytic activity. 
Synthesis of 2,2,4-Trimethyl-2,3-dihydro-1H-1,5-benzodiazepine using Treated Natural Zeolite Catalyst Maulidan Firdaus; Meyta Dyah Prameswari
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (180.978 KB) | DOI: 10.9767/bcrec.14.1.2222.9-16

Abstract

The cyclocondensation of 1,2-phenylenediamine and acetone in the presence of treated natural zeolite catalyst (TNZ) under solvent-free condition has been done. The research consisted of three steps. The first step was treatment of natural zeolite by mixing this material in hydrochloric acid solution at 50 °C for 1 hour to be followed by soaking the zeolite in ammonium chloride solution for 5 days. The second step was solvent-free condensation of 1,2-phenylenediamine and acetone using TNZ at 50 °C for 2 hours with weight ratio variation of catalyst, i.e. 15, 30, 45, and 60% (wt/wt). The third step was to study catalyst reusability for the condensation reaction. Based on TLC, FTIR, and 1H NMR analyses, the condensation afforded 2,2,4-trimethyl-2,3-dihydro-1H-1,5-benzodiazepine as the product in 73% yield with the optimum of catalyst loading at 30% (wt/wt). The reusability test showed that the catalyst can be reused for the cyclocondensation for four times. 
Silver Nanoparticles Supported on Chitosan as a Green and Robust Heterogeneous Catalyst for Direct Synthesis of Nitrogen Heterocyclic Compounds under Green Conditions Seyedeh Fazileh Fazileh Hamzavi; Shahla Jamili; Morteza Yousefzadi; Ali Mashinchian Moradi; Narges Amrollahi Biuki
Bulletin of Chemical Reaction Engineering & Catalysis 2019: BCREC Volume 14 Issue 1 Year 2019 (April 2019)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1229.246 KB) | DOI: 10.9767/bcrec.14.1.2105.51-59

Abstract

The catalytic efficiency of silver nanoparticles supported on chitosan as a green, robust, and efficient nanocatalyst for the direct synthesis of biologically active compounds, such as: imidazole derivatives as well as pyrazine scaffolds through multi-component reactions strategy, have been demonstrated. In this work, imidazole derivatives were achieved via pseudo four-component reactions by utilization of benzaldehydes, benzils, anilines, and ammonium acetate under solvent-free conditions. Moreover, pyrazine scaffolds were synthesized through a three-component reaction of phenylenediamine derivatives, isocyanides and various ketones in water. The main advantages of this protocol are the  reusability of the catalyst, operational simplicity, mild reaction conditions, and high-yielding.  

Page 1 of 3 | Total Record : 27