cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 21 Documents
Search results for , issue "2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)" : 21 Documents clear
Highly Selective Au/ZnO via Colloidal Deposition for CO2 Hydrogenation to Methanol: Evidence of AuZn Role Hasliza Bahruji; Mshaal Almalki; Norli Abdullah
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9375.44-51

Abstract

Gold, Au nanoparticles were deposited on ZnO, Al2O3, and Ga2O3 via colloidal method in order to investigate the role of support for CO2 hydrogenation to methanol. Au/ZnO was also produced using impregnation method to investigate the effect of colloidal method to improve methanol selectivity. Au/ZnO produced via sol immobilization showed high selectivity towards methanol meanwhile impregnation method produced Au/ZnO catalyst with high selectivity towards CO. The CO2 conversion was also influenced by the amount of Au weight loading. Au nanoparticles with average diameter of 3.5 nm exhibited 4% of CO2 conversion with 72% of methanol selectivity at 250 °C and 20 bar. The formation of AuZn alloy was identified as active sites for selective CO2 hydrogenation to methanol. Segregation of Zn from ZnO to form AuZn alloy increased the number of surface oxygen vacancy for CO2 adsorption to form formate intermediates. The formate was stabilized on AuZn alloy for further hydrogenation to form methanol.  The use of Al2O3 and Ga2O3 inhibited the formation of Au alloy, and therefore reduced methanol production. Au/Al2O3 showed 77% selectivity to methane, meanwhile Au/Ga2O3 produced 100% selectivity towards CO. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Effect of Calcination Temperature on the Photocatalytic Activity of Zn2Ti3O8 Materials for Phenol Photodegradation Krisfian Tata Aneka Priyangga; Yehezkiel Steven Kurniawan; Leny Yuliati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.10322.196-204

Abstract

Zinc titanate (Zn2Ti3O8) is a bimetal oxide material that is especially attractive as a photocatalyst. In the preparation of the Zn2Ti3O8, the calcination temperature is a crucial parameter. Hence, in the present work, we aimed to synthesize the Zn2Ti3O8 materials from zinc(II) nitrate and titanium(IV) isopropoxide as precursors by using a sol-gel method and followed by calcination at 700, 900, and 1100 °C to give ZT-700, ZT-900, and ZT-100 materials, respectively. The ZT materials were characterized using Fourier transform infrared (FTIR), diffuse reflectance ultraviolet-visible (DR UV-vis), and fluorescence spectroscopies. It was confirmed that the ZT materials contained O−Ti−O, Zn−O−Ti, Zn−O, Ti−O−Ti, and Ti−O functional groups as shown from their FTIR spectra. Similar fluorescence properties were only observed on the ZT-700 and ZT-900. From the bandgap energy analysis, ZT-700 and ZT-900 contained spinel and cubic Zn2Ti3O8 (spl-Zn2Ti3O8 and c-Zn2Ti3O8) crystal phases), while ZT-1100 contained c-Zn2TiO4 and TiO2 rutile crystal phases. The kinetic analysis of photocatalytic phenol degradation showed that both ZT-700 and ZT-900 materials exhibited high photocatalytic activity with the reaction rate constants of 0.0353 and 0.0355 h−1, respectively. These values were higher than that of the ZT-1100 (0.0206 h−1). This study demonstrated that calcination at 700 and 900 °C resulted in the formation of the spl-Zn2Ti3O8 and c-Zn2Ti3O8 phases, which were effective as the photocatalyst, but the formation of c-Zn2TiO4 and rutile TiO2 at calcination of 1100 °C deteriorated the photocatalytic activity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Nickel-phenanthroline Complex Supported on Mesoporous Carbon as a Catalyst for Carboxylation under CO2 Atmosphere Iman Abdullah; Riri Andriyanti; Dita Arifa Nurani; Yuni Krisyuningsih Krisnandi
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9733.111-119

Abstract

Carbon dioxide is a highly potential renewable C1 source for synthesis of fine chemicals. Utilization of CO2 in carboxylation reactions requires catalysts, such as: nickel complex for CO2 activation. However, the use of homogeneous catalysts in the reaction is still less efficient due to the difficulty of separating the product and catalyst from reaction mixture. Therefore, it is necessary to heterogenize the nickel complex in a solid support such as mesoporous carbon. In this report, mesoporous carbon (MC) prepared from phloroglucinol and formaldehyde through soft template method was used as a solid support for Ni-phenanthroline complex (Ni-phen). The catalyst was characterized by Fourier Transform Infra Red (FT-IR), X-Ray Diffraction (XRD), Scanning Electron Microscope - Energy Dispersive X-Ray (SEM-EDX), and Surface Area Analyzer (SAA). The result of SAA characterization showed that the pore diameter of MC was 6.7 nm and Ni-phen/MC was 5.1 nm which indicates that the materials have meso-size pores. Ni-phen/MC material was then used as a heterogeneous catalyst in the carboxylation reaction of phenylacetylene under an ambient CO2 pressure. The reactions were carried out in several variations of conditions such as temperature, time and catalyst types. Based on the results of the reaction, the best conditions were obtained at 25 °C for 8 h of reaction time using Ni-phen/MC catalyst.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Kinetic Studies of the Glycerolysis of Urea to Glycerol Carbonate in the Presence of Amberlyst-15 as Catalyst Hary Sulistyo; Wahyudi Budi Sediawan; Reviana Inda Dwi Suyatno; Indah Hartati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.8893.52-62

Abstract

Amberlyst-15, a strong acidic ion-exchange resin, has showed as a potential and an effective catalyst for the glycerolysis process of urea to glycerol carbonate. In this work, the kinetic model of the urea glycerolysis over Amberlyst-15 catalyst was investigated. The kinetic model was developed by considering simultaneous steps of urea dissolution in glycerol, mass transfer of urea and glycerol from the bulk of the liquid into the outer part of the catalyst, diffusion of urea and glycerol into the inner part of the particle through the catalyst pores, and irreversible second order reaction of urea and glycerol on the active sites. The irreversibility of second order reaction of urea glycerolysis was validated and proven. The proposed kinetic model was simulated and validated with the experimental data. The kinetic studies show that mechanism proposed works well. Furthermore, the activation energy was found to be 145.58 kJ.mol−1 and the collision factor was in 8.00×1010 (m3)2.kg−1.mol−1.s−1. The simulation result shows that the predicted liquid temperatures were close to the experimental temperature data. It also gave glycerol concentration profile inside the catalyst particle as a function of glycerolysis time and position. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Pyrolysis of Microalgae Chlorella sp. using Activated Carbon as Catalyst for Biofuel Production Viqhi Aswie; Lailatul Qadariyah; Mahfud Mahfud
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.10316.205-213

Abstract

Microalgae, as a potential raw material for biofuel, has several advantages compared to other biomass. One effective way to convert microalgae into biofuel is by thermal cracking or pyrolysis, and using a catalyst or not. So far, studies on the use of microalgae, that are converted into biofuels, is still use highly concentrated catalysts in packed bed reactors, which is not economical. Therefore, the aim of this study is to convert Chlorella sp. into biofuels with conventional pyrolysis without and using an activated carbon catalyst using packed bed reactor with bubble column. The reaction temperature is 400–600 °C, pyrolysis time is 1–4 hours, and the active carbon catalyst concentration is 0–2%. The 200 grams of Chlorella sp. and the catalyst was mixed in a fixed bed reactor under vacuum (−3 mm H20) condition. Next, we set the reaction temperature. When the temperature was reached, the pyrolysis was begun. After certain time was reached, the pyrolysis produced a liquid oil product. Oil products are measured for density and viscosity. The results showed that the conventional pyrolysis succeeded in converting microalgae Chlorella sp. into liquid biofuels. The highest yield of total liquid oil is obtained 50.2 % (heavy fraction yield, 43.75% and light fraction yield, 6.44%) at the highest conditions which was obtained with 1% activated carbon at a temperature and pyrolysis time of 3 hours. Physical properties of liquid biofuel are density of 0.88 kg/m3 and viscosity of 5.79 cSt. This physical properties are within the range of the national biodiesel standard SNI 7182-2012. The packed bed reactor completed with bubble column is the best choice for converting biofuel from microalgae, because it gives different fractions, so that it is easier to process further to the commercial biofuel stage. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Light-Harvesting Metal-Organic Frameworks (MOFs) La-PTC for Photocatalytic Dyes Degradation Agustino Zulys; Adawiah Adawiah; Jarnuzi Gunlazuardi; Muhammad Derry Luthfi Yudhi
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.10309.170-178

Abstract

A novel porous metal organic framework, La-PTC was synthesized by solvothermal method using a perylene-3,4,9,10-tetracarboxylate ligand and lanthanum metal ion. The FTIR analysis showed that La-PTC has a different structure with PTCDA and Na4PTC. The La-PTC MOF has high crystallinity, bandgap energy of 2.21 eV with a maximum absorption area at 561 nm. A rod shape structure of La-PTC has been obtained with the surface area of 22.2364 m2.g−1 and classified into mesoporous material. The La-PTC was relative stable up to 376.93 °C. The La-PTC can degrade 64.76% of MO within ca. 240 min under visible light irradiation with the amount of 30 mg La-PTC. The addition of H2O2 improved the photocatalytic activity of La-PTC with degradation efficiency of 67.02%, 70.00%, and 99.60% for MB, RhB, and MO, respectively. This study presents the fabrication of the light-harvesting metal organic framework, La-PTC and its potential in dyes degradation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
A Two-Step SO3H/ICG Catalyst Synthesis for Biodiesel Production: Optimization of Sulfonation Step via Microwave Irradiation Nur Nazlina Saimon; Norzita Ngadi; Mazura Jusoh; Zaki Yamani Zakaria
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9613.63-75

Abstract

Conventional heating, a common method used for heterogeneous solid acid catalyst synthesis unknowingly consumes massive time and energy. In this study, acid catalyst was prepared through sulfonation process of incomplete carbonized glucose (ICG) via microwave-assisted technique to shorten the heating time and energy consumption. Optimization of the sulfonation process of ICG via microwave-assisted was carried out. Four-factor-three-level central composite design (CCD) was used to develop the design of experiments (DOE). Interaction between two factors was evaluated to determine the optimum process conditions. A quadratic model was proposed for prediction of biodiesel yield (Y) from palm fatty acid distillate (PFAD) and its conversion (C). The application of DOE successfully optimized the operating conditions for the two-step SO3H/ICG catalyst synthesis to be used for the esterification process. The optimized conditions of the best performing SO3H/ICG with maximum Y and C were at 7.5 minutes of reaction time, 159.5 mL of H2SO4 used, 671 rpm of stirring rate as well as 413.64 watt of power level. At these optimum conditions the predicted yield percentage and conversion percentage were 94.01% and 91.89%, respectively, which experimentally verified the accuracy of the model. The utilization of sulfonated glucose solid acid catalyst via microwave-assisted in biodiesel production has great potential towards sustainable and green method of synthesizing catalyst for biodiesel. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Study on Ammonia-induced Catalyst Poisoning in the Synthesis of Dimethyl Oxalate Hua-wei Liu; Sheng-tao Qian; Er-fei Xiao; Ying-jie Liu; Jun Lei; Xian-hou Wang; Yu-hua Kong
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9572.1-8

Abstract

On an industrial plant, we observed and examined the ammonia-poisoning catalyst for the synthesis of dimethyl oxalate (DMO). We investigated the catalytic activity in response to the amount of ammonia and revealed the mechanism of such poisoning by X-ray photoelectron spectroscopy (XPS) characterization. Our results show that only 0.002% ammonia in the feed gas can significantly deactivate the Pd-based catalyst. Two main reasons were proposed: one is that the competitive adsorption of ammonia on the active component Pd hinders the carbon    monoxide (CO) coupling reaction and the redox cycle between Pd0 and Pd2+; and the other is that the high-boiling nitrogen-containing amine compounds formed by reacting with ammonia have adsorbed on the catalyst, which hinders the progress of the catalytic reaction. The deactivation caused by the latter is irreversible. The catalytic activity can be completely restored by a low-temperature liquid-phase in-situ regeneration treatment. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Co-Solvent Free Electrochemical Synthesis of Biodiesel Using Graphite Electrode and Waste Concrete Heterogeneous Catalyst: Optimization of Biodiesel Yield Wiyogo Prio Wicaksono; Sekar Asmara Jati; Ika Yanti; Prastika Krisma Jiwanti
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.10310.179-187

Abstract

This study optimized a co-solvent free electrochemical method for biodiesel synthesis using graphite electrode and waste concrete heterogeneous catalyst. Various parameters were evaluated, including: applied voltage (9.6, 14.4, 19.2 V), catalyst particle size uniformity (unfiltered and filtered with 150 mesh), and reaction time (15, 30, 120, 240 min). The results obtained 100% FAME content and 78.51% of biodiesel yield that were achieved at 14.4 V within 30 min using filtered catalyst and cooking oil feedstock. However, a slight decline was observed with the use of waste cooking oil. This optimized method offers a reliable and simple condition for mass biodiesel production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Hydro-treating and Hydro-isomerisation of Sunflower Oil using Pt/SAPO-11: Influence of Templates in Ultrasonic Assisted with Hydrothermal Synthesis Shanmugam Palanisamy; Durona Palanisamy; Mugaishudeen Gul; Kannan Kandasamy; Borje Sten Gevert
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 1 Year 2021 (March 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.1.9889.120-135

Abstract

Pt/SAPO-11 mesopores type materials has successfully synthesized using different templates, such as: diethylamine (DEA), dimethylamine (DMA), and n-propylamine (n-PA), under ultrasonication coupled with hydrothermal treatment or independently with hydrothermal treatment. The influences of structure directing agent (SDA) and synthesis method are investigated by different characterization techniques and the role of the material as catalyst in hydrotreating of sunflower oil has examined. The synthesized materials have been characterized by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM), and Fourier Transform Infra Red (FT-IR) techniques. It is found that SAPO-11 material which has synthesized with n-PA as a template has the characteristics of high silicon incorporation. Hydrotreating of sunflower oil is carried out in a fixed bed reactor with Pt impregnated SAPO-11 catalyst and a detailed study on the isomerization is performed by varying the operating parameters like temperature and space velocity. The high selectivity of Pt/SAPO-11 catalyst is achieved by uniform pore size and acidity. Also the pore opening of the catalyst has a major effect in the selectivity of the catalyst. Further, it represents a higher ratio of isomers compared to other synthesized catalysts on hydro-treating of sunflower oil.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Page 1 of 3 | Total Record : 21