cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 23 Documents
Search results for , issue "2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)" : 23 Documents clear
Catalytic Pyrolysis of Municipal Solid Waste: Effects of Pyrolysis Parameters Hamad AlMohamadi; Abdulrahman Aljabri; Essam R.I. Mahmoud; Sohaib Z. Khan; Meshal S. Aljohani; Rashid Shamsuddin
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10499.342-352

Abstract

Burning municipal solid waste (MSW) increases CO2, CH4, and SO2 emissions, leading to an increase in global warming, encouraging governments and researchers to search for alternatives. The pyrolysis process converts MSW to oil, gas, and char. This study investigated catalytic and noncatalytic pyrolysis of MSW to produce oil using MgO-based catalysts. The reaction temperature, catalyst loading, and catalyst support were evaluated. Magnesium oxide was supported on active carbon (AC) and Al2O3 to assess the role of support in MgO catalyst activity. The liquid yields varied from 30 to 54 wt% based on the experimental conditions. For the noncatalytic pyrolysis experiment, the highest liquid yield was 54 wt% at 500 °C. The results revealed that adding MgO, MgO/Al2O3, and MgO/AC declines the liquid yield and increases the gas yield. The catalysts exhibited significant deoxygenation activity, which enhances the quality of the pyrolysis oil and increases the heating value of the bio-oil. Of the catalysts that had high deoxygenation activity, MgO/AC had the highest relative yield. The loading of MgO/AC varied from 5 to 30 wt% of feed to the pyrolysis reactor. As the catalyst load increases, the liquid yield declines, while the gas and char yields increase. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Evaluation of Corrosion Inhibition of 316L Stainless Steel by Permanganate Ions in Chloride Solution Fahd Arboui; Sid Ahmed Amzert; Mohamed Nadir Boucherit; Salah Hanini; Khaoula Ghezali
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10504.234-243

Abstract

The efficiency of permanganates to inhibit the scale deposit captured the attention for more investigation on their role as corrosion inhibitor. In this article, the effect of permanganate as corrosion inhibitor on 316L stainless steel in NaCl solution is investigated. The potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) have been performed by varying the electrode stirring speed, the concentration of permanganate ions, pH and the temperature. The results show that the permanganate ions increase the cathodic and anodic currents under effect of stirring speed, due to oxygen reduction reaction and the reduction of permanganate ions. Electrochemical results indicate that the deposit of manganese oxide (MnO2) inhibits the pitting corrosion. The inhibition efficiency is up to 98 % for 10−4 mol.dm−3 of permanganate. The temperature reduces the effectiveness of permanganates against pitting corrosion, the pitting potential shifts cathodically from +0.395 V vs. Saturated Calomel Electrode (SCE) at 298 K to +0.275 V vs. SCE at 343 K. Surface morphology of the deposit oxide films and electrode are studied by emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared and Differential Scanning Calorimetry. The analysis of the deposit layer by X-ray diffraction revealed the presence of δ-MnO2 form, with a crystallite size of 3.17 nm.  Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Fe-doped TiO2/Kaolinite as an Antibacterial Photocatalyst under Visible Light Irradiation Anthoni B. Aritonang; Eka Pratiwi; Warsidah Warsidah; S. I. Nurdiansyah; R. Risko
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10325.293-301

Abstract

In this work, undoped and Fe-doped TiO2 immobilized on kaolinite surface was successfully synthesized by sol-gel method with various Fe concentrations (0.05, 0.125, and 0.25 wt%). The effects of Fe doping into TiO2 lattice were thoroughly investigated by a diffuse reflectance UV-visible (DRS) spectroscopy, Fourier Transform Infrared (FTIR) spectroscopy, and X-ray diffraction (XRD). The optical band gap of undoped and Fe-doped TiO2/kaolinite is red shifted with respect to the incorporation of Fe3+ into the structure of TiO2 resulted band gap. The FTIR spectra shows a shift of peak at the wave number at 586 cm−1 and 774 cm−1 which is attribute of the Fe−O vibration as an indication of the formation of Fe-TiO2 bonds. Incorporation of Fe3+ cation into the TiO2 lattice replacing the Ti4+ ions, which induced a perturbation in anatase crystal structure, causes the change in the distance spacing of the crystal lattices dhkl(101) of 8.9632 to 7.9413. The enhanced photocatalytic performance was observed for Fe-doped TiO2/kaolinite compared with TiO2/kaolinite with respect to Escherichia coli growth inhibition in solution media under visible light irradiation. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).  
Potential of Microalgae in Bioremediation of Wastewater Imran Ahmad; Norhayati Abdullah; I. Koji; A. Yuzir; S.E. Mohamad
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10616.413-429

Abstract

The increase in global pollution, industrialization and fast economic progress are considered to inflict serious consequences to the quality and availability of water throughout the world. Wastewater is generated from three major sources, i.e. industrial, agricultural, and municipal which contain pollutants, such as: xenobiotics, microplastics, heavy metals and augmented by high amount of carbon, phosphorus, and nitrogen compounds. Wastewater treatment is one of the most pressing issues since it cannot be achieved by any specific technology because of the varying nature and concentrations of pollutants and efficiency of the treatment technologies. The degradation capacity of these conventional treatment technologies is limited, especially regarding heavy metals, nutrients, and xenobiotics, steering the researchers to bioremediation using microalgae (Phycoremediation). Bioremediation can be defined as use of microalgae  for removal or biotransformation of pollutants and CO2 from wastewater with concomitant biomass production. However, the usage of wastewaters for the bulk cultivation of microalgae is advantageous for reducing carbon, nutrients cost, minimizing the consumption of freshwater, nitrogen, phosphorus recovery, and removal of other pollutants from wastewater and producing sufficient biomass for value addition for either biofuels or other value-added compounds. Several types of microalgae like Chlorella and Dunaliella have proved their applicability in the treatment of wastewaters. The bottlenecks concerning the microalgal wastewater bioremediation need to be identified and elucidated to proceed in bioremediation using microalgae. This objective of this paper is to provide an insight about the treatment of different wastewaters using microalgae and microalgal potential in the treatment of wastewaters containing heavy metals and emerging contaminants, with the specialized cultivation systems. This review also summarizes the end use applications of microalgal biomass which makes the bioremediation aspect more environmentally sustainable. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Nanoparticles Synergistic Effect with Various Substrate Pretreatment and their Comparison on Biogas Production from Algae Waste Asad A. Zaidi; Sohaib Zia Khan; Hamad Almohamadi; Essam R. I. Mahmoud; Muhammad N. Naseer
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10637.374-382

Abstract

Algae waste is one of the potential substrates for biogas and biohydrogen production and can comprehend multiple benefits of waste treatment and resource utilization. In view of the key bottlenecks such as low substrate degradation rate and poor productivity of algae waste production process, this study analyzes the combined effect of two metallic and metallic oxide nanoparticles with different substrate pretreatment methods (autoclave, ultrasonic, and microwave methods) to investigate the effect of anaerobic digestion of green algae (Enteromorpha). The results showed that out of the three pretreatment methods, microwave pretreatment and nanoparticles' synergistic effect significantly increases biogas production. The microbial community composition at the phylum level was analyzed. It was observed that the Firmicutes were most abundant across all samples. The relative abundance of Firmicutes for control, Ni NPs + MW, Co NPs + MW, and Fe3O4 NPs + MW groups were 51.78, 70.37, 75.77, and 83.93%,      respectively. The second most abundant was of Bacteroidetes that also contributes to hydrogen production. This relatively high abundance of Firmicutes and Bacteroidetes promises its potential applications in a hydrogen production facility. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Preparation of Ca/Al-Layered Double Hydroxides/Biochar Composite with High Adsorption Capacity and Selectivity toward Cationic Dyes in Aqueous Risfidian Mohadi; Neza Rahayu Palapa; Aldes Lesbani
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10211.244-252

Abstract

Widely reports have evaluated the use of biochar (BC) composites to layered double hydroxide (LDH) to adsorb dyes from wastewater. However, its applicability for adsorbing a mixture of cationic dyes such as Malachite green (MG), Rodhamine-B (Rh-B), and Methylene blue (MB), which causes carcinogenic and mutagenic effects on aquatic life, has not been studied. In this work, we compared the performance of CaAl-LDH/BC adsorbent with or without the addition of BC in the adsorption of cationic dyes. The adsorption study was prepared in a batch system using various temperatures, concentrations, and also contact time. The results of the characterization of Ca/Al-Biochar composite showed the unique diffraction of XRD pattern, and also showed two characteristics of starting materials. Surface area analysis by BET method showed Ca/Al-Biochar composite has a higher surface area than starting material. The results of the adsorption study of MG showed that Ca/Al-Biochar follows the pseudo-second-order kinetic model. The adsorption capacity of MG on Ca/Al-Biochar was up to 71.429 mg/g and shows selectivity toward MG in an aqueous solution. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Oxytetracycline Mineralization inside a UV/H2O2 System of Advanced Oxidation Processes: Inorganic By-Product Anisa Ur Rahmah; Sabtanti Harimurti; Kiki Adi Kurnia; Abdul Aziz Omar; Thanabalan Murugesan
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10308.302-309

Abstract

Oxytetracycline (OTC) was widely used antibiotic in agricultural industry. However, most of them were secreted from the body and entered the water stream, due to low absorption. The occurrence of the antibiotics in water stream may led to serious health hazards. Hence, finding the effective method that capable to achieve total mineralization of antibiotic-contaminated wastewater, followed by the production of benign inorganic and organic by-product, was necessarily deemed. Photochemical degradation method, such as: UV/H2O2 system, was capable to achieve total mineralization of OTC at its optimized condition. In this paper, inorganic by-products of OTC mineralization inside a UV/H2O2 system at its optimum condition were analyzed. The presence of nitrate, ammonium, chloride ions, and chlorine were detected at the sample solution after mineralization. The presence of these inorganic by-product has proven that the experimental setup chosen was capable to achieve total mineralization. In addition, possible routes of the inorganic by-products detachment from the OTC’s structure, were also presented. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Hydrogen Desorption Properties of MgH2 + 10 wt% SiO2 + 5 wt% Ni Prepared by Planetary Ball Milling Malahayati Malahayati; Evi Yufita; Ismail Ismail; Mursal Mursal; Rinaldi Idroes; Zulkarnain Jalil
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10220.280-285

Abstract

MgH2 is a very hopeful material for application as hydrogen storage material in the solid form. This is due to its reversibility and its ability to store large amounts of hydrogen, which is 7.6 wt%. However, this material still has weaknesses, namely high operating temperature and slow kinetic reactions. Various attempts have been made to overcome this weakness, including downsizing and adding catalyst. In this study, double catalyst was used, namely natural silica extracted from rice husk ash and nickel nano powder, with a composition of MgH2 + 10 wt% SiO2 + 5 wt% Ni. The purpose of this research was to study the effect of downsizing and using these catalysts to the thermodynamic and kinetic properties of the hydrogen storage material MgH2. Samples were prepared by using High Energy Ball Milling (HEBM), with variations in milling time of 1, 5, 10, and 15 hours. The X-ray Diffraction (XRD) pattern showed the presence of an impurity phase in the samples milled for 10 and 15 hours. It also showed a reduction in grain size with increasing milling time. However, agglomeration has occurred in the samples milled for 15 hours. From the Scanning Electron Microscope (SEM) results can be seen that the sample with longer milling time, were homogeneously distribute. Thermal investigation showed that the lowest desorption temperature was achieved in samples with milling time of 5 and 10 hours, namely 287 °C and 288 °C. This study shows that natural silica catalyst plays a role in improving the thermodynamic characteristics of MgH2, while Ni plays a role in improving the kinetic characteristics of MgH2. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Chemical and Structural Changes of Ozonated Empty Fruit Bunch (EFB) in a Ribbon-Mixer Reactor Nurul Suhada Abdur Rasid; Amnani Shamjuddin; Nor Aishah Saidina Amin
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10506.383-395

Abstract

Agricultural wastes especially empty fruit bunch (EFB) are abundantly available to be utilized as a feedstock for biochemical synthesis or biofuel production. The components of the waste include lignin, hemicellulose and cellulose. Cellulose, the polymer of glucose, is the active component for producing bio-based chemicals. However, it is difficult to isolate cellulose since lignin, the most outer layer in the waste is recalcitrant. Therefore, the agricultural wastes need to be pre-treated prior to downstream processing. The aim of this study was to investigate the effect of ozone pretreatment on lignin degradation and total reducing sugar (TRS) yield. EFB was pre-treated using ozone gas in a ribbon-mixer reactor. The chemical and structural changes of ozonated EFB were analysed. The highest delignification obtained were 95.7 wt.% and TRS yield was enhanced to 84.9% at a moisture content of 40 wt.% with 60 g/m3 ozone concentration within one hour of reaction time. Both NMR and FTIR spectra conferred major peaks inferring higher lignin degradation could be achieved using ozonolysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Mesoporous Magnesium Oxide Adsorbent Prepared via Lime (Citrus aurantifolia) Peel Bio-templating for CO2 Capture A. H. Ruhaimi; C. C. Teh; Muhammad Arif Ab Aziz
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 2 Year 2021 (June 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.2.10505.366-373

Abstract

The utilization of the lime (Citrus aurantifolia) peel as a template can improve the adsorbent’s structural properties, which consequently affect its CO2 uptake capacity. Herein, a mesoporous magnesium oxide (MgO-lime (Citrus aurantifolia) peel template (LPT)) adsorbent was synthesized using an LPT. MgO-LPT demonstrated improved structural properties and excellent CO2 uptake capacity. Moreover, another MgO adsorbent was prepared via thermal decomposition (MgO-TD) for comparison. The prepared adsorbents were characterized by N2 physisorption, Fourier transform infrared spectroscopy and thermogravimetric analysis. The CO2 uptake of these adsorbents was under 100% CO2 gas and ambient temperature and pressure conditions. MgO-LPT exhibited a higher Brunauer–Emmett–Teller surface area, Barrett–Joyner–Halenda pore volume, and pore diameter of 23 m2.g−1, 0.142 cm3.g−1, and 24.6 nm, respectively, than those of MgO-TD, which indicated the mesoporous structure of MgO-LPT. The CO2 uptake capacity of MgO-LPT is 3.79 mmol CO2.g−1, which is 15 times that of MgO-TD. This study shows that the application of lime peel as a template for the synthesis of MgO adsorbents is a promising approach to achieve MgO adsorbents with enhanced surface area and thus increased CO2 capture performance. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Page 1 of 3 | Total Record : 23