cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 23 Documents
Search results for , issue "2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)" : 23 Documents clear
Statistical Optimisation using Taguchi Method for Transesterification of Reutealis Trisperma Oil to Biodiesel on CaO-ZnO Catalysts Zeni Rahmawati; H. Holilah; Santi Wulan Purnami; Hasliza Bahruji; Titie Prapti Oetami; Didik Prasetyoko
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10648.686-695

Abstract

Optimisation of biodiesel production from non-edible Reutealis Trisperma oil (RTO) was investigated using Taguchi method. Biodiesel was produced via consecutive esterification and transesterification reactions. Esterification of RTO was carried out using acid catalyst to decrease the amount of free fatty acid from 2.24% to 0.09%. Subsequent transesterification of the treated oil with methanol over a series of CaO-ZnO catalysts was optimized based on the L9 Taguchi orthogonal approach. The optimization parameters are Ca/Zn ratio (0.25, 0.5, and 1), methanol/oil ratio (10, 20, and 30) and reaction time (0.5, 1, and 2 h). CaO-ZnO catalysts at variation of Ca/Zn ratios were prepared using co-precipitation method and characterized using XRD, SEM, TEM, and FTIR analysis. The amount of methyl ester yield was used as the response parameter in the S/N ratio analysis and Analysis of Variance (ANOVA). The optimum parameter for RTO transesterification to biodiesel was determined at Ca/Zn ratio of 1, methanol oil ratio of 30 and reaction time for 2 h. Transesterification under these optimized parameter generated 98% of biodiesel yield, inferring the validity of the statistical approach. Furthermore, ANOVA analysis also confirmed that all the parameters were significantly contributed at approximately equal percentage towards the amount of biodiesel. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
The Effect of Time on the Activation of Bayah Natural Zeolite for Application of Palm Oil Shell Pyrolysis Endang Suhendi; Teguh Kurniawan; Adian Yoga Pradana; Vicky Zayan Giffari
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10313.588-600

Abstract

Oil palm shell (OPS) constitutes 60% of the waste generated during the processing of palm oil. However, OPS can potentially be converted into energy and chemicals through pyrolysis. The purpose of this study is to determine and analyse the effect of acid treatment time on the characteristics of natural zeolites, which were then applied to oil palm shell pyrolysis. The effect of the acid treatment time on the products of the pyrolysis was also studied. The acid treatment time was varied: 1, 3, and 5 hours. The crystallinity of the natural zeolites was determined by       X-ray diffraction (XRD). Solid, liquid and gaseous pyrolysis products were observed. Proximate, ultimate, and heat analysis were performed on the solid product. The liquid product was characterised using gas chromatography-mass spectrometry (GC-MS). Gas Chromatography (GC) was performed to analyse the composition of the gases produced. The results obtained from this study indicate that longer reflux times reduced the crystallinity of the zeolites. The addition of the zeolite catalysts increased the liquid products of pyrolysis from 24.5 wt% over the parent to 24.6–37.1 wt% over the acid-treated natural zeolites. The reduction of oxygenated compounds in bio-oil was observed in the amount of acetic acid and acetone produced. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA   License (https://creativecommons.org/licenses/by-sa/4.0). 
In Search of Magnetic Properties of Samarium Cobalt (Sm2Co17) within a Low-Temperature Sintering Process Poppy Puspitasari; A. Muhammad; A. A. Permanasari; T. Pasang; S. M. S. N. S. Zahari; N. A. Ahmad
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10482.517-524

Abstract

Samarium cobalt is known as super high density magnetic material with large magnetic anisotropy energy. Samarium–cobalt exhibits manipulative magnetic properties as a rare-earth material which has different properties in a low sintering temperature. It is therefore of paramount importance to investigate samarium cobalt (Sm2Co17) magnetic properties in the low temperature sintering condition. Sm2Co17, which is utilized in this research, is synthesized via the sol–gel process at sintering temperatures of 400, 500, and 600 °C. Subsequently, the crystallites indicate the formation of a single-phase Sm2Co17 on all the samples in all temperature variations. Moreover, the peaks in the X-ray diffraction analysis of crystallite sizes calculated using the Scherrer equation are 17.730, 15.197, and 13.296 nm at 400, 500, and 600 °C. Through scanning electron microscopy, the particles are found to be relatively large and agglomerated, with average sizes of 143.65, 168.78, and 237.26 nm. The functional groups are also analyzed via Fourier-transform infrared spectroscopy, which results in the appearance of several bonds in the samples, for example, alkyl halides, alkanes, and esters with aromatic functional groups on the fingerprint area and alkynes, alkyl halides, and alcohol functional groups at a wavelength of above 1500 cm. The test results of the magnetic properties using vibrating-sample magnetometer (VSM) revealed high coercivity and retentivity in the samples sintered at 400 °C. However, the highest saturation occurs in the samples sintered at 600 ℃. At a low sintering temperature (below 1000 °C), samarium cobalt shows as the soft magnetic material. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Effect of CTAB Ratio to the Characters of Mesoporous Silica Prepared from Rice Husk Ash in the Pyrolysis of a–cellulose Nia Meisa Wulandari; Lisna Efiyanti; Wega Trisunaryanti; Haryo Satriya Oktaviano; Syaiful Bahri; Yatim Lailun Ni’mah; Savitri Larasati
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10828.632-640

Abstract

Due to its wide application, synthesizing silica through a cost-effective process becomes an attractive subject to be studied today. In this work, mesoporous silica (MS) was prepared from the highly available agricultural waste, rice husk ash (RHA), to be used as catalyst in the pyrolysis of a-cellulose. Silica was extracted from RHA through a reflux process in a strong base solution and arranged into a mesoporous structure by using cetyltrimethylammonium bromide (CTAB). To find a condition that produces a mesoporous support with the highest surface area and catalytic activity, the mole ratios of CTAB:SiO2 used during the preparation of MS were varied; 0.05:1; 0.1:1; 0.2:1. Afterwards, all prepared MS were characterized using Fourier Transform Infra Red (FTIR), Scanning Electron Microscope (SEM), and Surface Area Analyzer (SAA). Through he surface area analysis, it was found that MS materials possessed surface area, pore diameter, and pore volume that range from 600–970 m2.g−1, 3.5–4.7 nm, 0.7–1 cm3.g−1, respectively. The highest surface area, with over 970.80 m2.g−1, was obtained in MS support prepared by using CTAB:SiO2 mole ratio of 0.1:1. SEM images showed a coral reef-like surface morphology for all MS. In the pyrolysis of a-cellulose evaluated by Py-GCMS, aside from producing biofuel compounds, the use of MS was able to generate two-fold furan production, which is considered as a valuable compound in many chemical syntheses. This result highlights the potential of MS prepared from RHA to be used as a catalysis support material that is more economical for biofuel and other chemical production. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Understanding Pore Surface Modification of Sucrose-Modified Iron Oxide/Silica Mesoporous Composite for Degradation of Methylene Blue Yuvita Eka Pertiwi; Maria Ulfa; Teguh Endah Saraswati; Didik Prasetyoko; Wega Trisunaryanti
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10619.459-471

Abstract

Santa Barbara Amorphous (SBA-15) containing iron oxide with a sucrose-modified in a heterogeneous reaction for degradation methylene blue (MB) successful synthesized used hydrothermal, ultrasonication, and wet impregnation method. SBA-15 is mesoporous silica that can easily serve as external and internal surfaces making it suitable for a wide range of applications. The structure and morphology of materials were characterized using Surface Area Analyzer (SAA), X-ray diffraction (XRD), Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscope-Energy Dispersive X-Ray (SEM-EDX), and Transmission Electron Microscopy (TEM). Iron oxide impregnated as a maghemite phase has an average size of 12 nm and well distributed on the SBA-15. After modified with sucrose the materials remaining stable, which has a two-dimensional hexagonal (p6mm) structure, high specific surface area, and large pore volume (up to 1.82 cm3.g−1). The degradation of MB was evaluated under visible light irradiation using UV-Vis spectroscopy. Catalytic activity showed efficiencies of 52.9; 70.2; and 21.1% for SBA-15, Fe2O3/SBA-15, and sucrose-modified Fe2O3/SBA-15 respectively. Sucrose-modified Fe2O3/SBA-15 has the lowest efficiency, which probably occurs due to the presence of pore-blocking and the formation of micropores on the external pore. The modification with sucrose has the advantage of producing a high surface area even though there is a catalytic center due to partial decomposition which causes a decrease in the efficiency of degradation of MB. All materials provide a high micro surface area so that they can be further adapted and can be widely applied to many potential applications as both catalyst support and an adsorbent. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Molecular Interaction Analysis of COX-2 Against Aryl Amino Alcohol Derivatives from Isoeugenol as Anti Breast Cancer using Molecular Docking Zulfa Zuhrufa; Tatang Shabur Julianto
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10324.581-587

Abstract

Breast cancer occurs due to uncontrolled cells proliferation. The Proliferation causes severe inflammatory which can be the initial stages of cancer symptoms. Aryl amino alcohol compounds from isoeugenol derivatives are proposed for the potential drugs of breast cancer. This study was conducted on iso-eugenol derivatives by adding carbonyl groups, hydroxyl groups, halide compounds and amines to determine the effect on anticancer activity through molecular docking studies. The molecular docking approach is carried out to see the interaction of ligands with protein compounds by using the minimized ligand energy bind with protein active site using protein data bank ID 5GMN. The docking result show that IE-Benzanilide-Cl (11) and IE-Benzanilide-OH (10) have the lowest binding energy (−8.3 kcal/mol and −8.6 kcal/mol) compare to another compounds. AdmetSAR computer simulations show that all compounds have very few toxic effects. The use of aryl amino alcohol derivatives (10 and 11) may be suggested as anti-breast cancer drugs. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Challenges & Opportunities on Catalytic Conversion of Glycerol to Value Added Chemicals Zaki Yamani Zakaria; Mazura Jusoh; Shams Shazid Kader; Siti Shawalliah Idris
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10524.525-547

Abstract

With the rapid expansion of biodiesel industry, its main by-product, crude glycerol, is anticipated to reach a global production of 6 million tons in 2025. It is actually a worrying phenomenon as glycerol could potentially emerge as an excessive product with little value. Glycerol, an alcohol and oxygenated chemical from biodiesel production, has essentially enormous potential to be converted into higher value-added chemicals. Using glycerol as a starting material for value-added chemical production will create a new demand on the glycerol market such as lactic acid, propylene glycol, alkyl lactatehydrogen, olefins and others. This paper briefly reviews the recent development on value-added chemicals derived from glycerol through catalytic conversion of refined and crude glycerol that have been proven to be promising in research stage with commercialization potential, or have been put in a corporate marketable production. Despite of the huge potential of products that can be transformed from glycerol, there are still numerous challenges to be addressed and discussed that include catalyst design and robustness; focus on crude or refined glycerol; reactor technology, reaction mechanism and thermodynamic analysis; and overall process commercial viability. The discussion will hopefully provide new insights on justified direction to focus on for glycerol transformation technology. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
The Potential of Cellulose as a Source of Bioethanol using the Solid Catalyst: A Mini-Review Didi Dwi Anggoro; Kamsi Nur Oktavia
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10635.661-672

Abstract

One of the most important biofuels is cellulose ethanol which is a popular material for bioethanol production. The present cellulosic ethanol production is through the cellulolytic process and this involves the splitting of complex cellulose into simple sugars through the hydrolysis process of the lignocellulose pretreated with acids and enzymes after which the product is fermented and distilled. There are, however, some challenges due to the enzymatic and acid processes based on the fact that acid hydrolysis has the ability to corrode equipment and cause unwanted waste while the enzymatic hydrolysis process requires a longer time because enzymes are costly and limited. This means there is a need for innovations to minimize the problems associated with these two processes and this led to the application of solid catalysts as the green and effective catalyst to convert cellulose to ethanol. Solid catalysts are resistant to acid and base conditions, have a high surface area, and do not cause corrosion during the conversion of the cellulose due to their neutral pH. This review, therefore, includes the determination of the cellulose potential as feedstock to be used in ethanol production as well as the preparation and application of solid catalyst as the mechanism to convert cellulose into fuel and chemicals. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Biocatalytic Reduction of Formaldehyde to Methanol: Effect of pH on Enzyme Immobilization and Reactive Membrane Performance Norhayati Abdul Rahman; Fauziah Marpani; Nur Hidayati Othman; Nur Hashimah Alias; Junaidah Jai; Nik Raikhan Nik Him
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10568.472-480

Abstract

Thermodynamic stabled CO2 molecules can be biocatalytically reduced to methanol via three cascade dehydrogenases (formate, formaldehyde and alcohol) with the aid of cofactor as the electron donor. In this study, Alcohol dehydrogenase (EC 1.1.1.1), the third step of the cascade enzymatic reaction which catalyzed formaldehyde (CHOH) to methanol (CH3OH) will be immobilized in an ultrafiltration membrane. The enzyme will be immobilized in the support layer of a poly(ether)sulfone (PES) membrane via a technique called fouling induced enzyme immobilization. The objective of this study is to evaluate the effect of varying pH (acid (pH 5), neutral (pH 7) and alkaline (pH 9)) of the feed solution during immobilization process of ADH in the membrane in terms of permeate flux, observed rejection, enzyme loading and fouling mechanism. The experiment was conducted in a pressure driven, dead-end stirred filtration cell. Reaction conversion and biocatalytic productivity will be also evaluated. The results showed that permeate flux for acid solution were the lowest during immobilization. High concentration polarization and fouling resistance cause lower observed rejection for pH 7 and 9. Enzyme loading for pH 5 give 73.8% loading rate which is the highest compared to 62.4% at pH 7 and 70.1% at pH 9. Meanwhile, the conversion rate during the reaction shows that reaction on fouled membrane showed more than 90% conversion for pH 5 and 7. The fouling model predicted that irreversible fouling occurs during enzyme immobilization at pH 7 with standard blocking mechanism while reversible fouling occurs at pH 5 and 9 with intermediate and complete blocking, respectively. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Catalytic Oxidation of Ponceau 4R in Aqueous Solution using Iron-impregnated Al-pillared Bentonite: Optimization of the Process Paula Andrea Henao-Aguirre; Iván Fernando Macías-Quiroga; Gloria Inés Giraldo-Gómez; Nancy Rocío Sanabria-González
Bulletin of Chemical Reaction Engineering & Catalysis 2021: BCREC Volume 16 Issue 3 Year 2021 (September 2021)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.16.3.10757.491-506

Abstract

The application of the Fenton-like process for the oxidation of an aqueous solution of Ponceau 4R dye, using an aluminum pillared clay impregnated with iron (Fe(wt%)/Al-PILC) as catalyst, was investigated. The Response Surface Methodology (RSM), based on a Central Composite Design (CCD) was used to evaluate and optimize the oxidation process of a Ponceau 4R solution. Three independent variables were studied in the experimental design: the amount of H2O2 expressed in multiples of times of stoichiometry dose, iron concentration incorporated by impregnation onto aluminum pillared clay (Fe(wt%)), and amount of catalyst (Fe(wt%)/Al-PILC). The response variables were decolorization and total organic carbon (TOC) removal. The significance of independent variables and their interactions were tested by means of analysis of variance (ANOVA), with a 95% confidence level. With low stoichiometric dose of H2O2 (0.96 and 1.54 times), medium amount of catalyst (374.4 and 391.3 mg) and high Fe concentration impregnated in pillared clay (9.3 and 7.7 wt%), the total decolorization and high TOC removal were achieved. Under multi-objective optimization conditions (3.0 times the stoichiometric dose of H2O2, 420 mg Fe(wt%)/Al-PILC and 5.5 wt% Fe impregnated in Al-PILC), it was possible to achieve 86.18% decolorization and 66.81% TOC removal after 5 h of reaction at 25 °C, with the additional advantage of showing an iron leaching of less than 0.10 mg/L. The established models' soundness is confirmed by a good fit between predictive models and experimental results. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Page 1 of 3 | Total Record : 23