cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota semarang,
Jawa tengah
INDONESIA
Bulletin of Chemical Reaction Engineering & Catalysis
Published by Universitas Diponegoro
ISSN : -     EISSN : 19782993     DOI : -
Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction engineering.
Arjuna Subject : -
Articles 21 Documents
Search results for , issue "2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)" : 21 Documents clear
The Ni Catalyst Supported on the FSP-made Transition Metal (Co, Mn, Cu or Zn) Doped La2O3 Material for the Dry Reforming of Methane Phakampai Aunmunkong; Choowong Chaisuk
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12501.88-102

Abstract

The transition metal (Co, Mn, Cu or Zn) doped La2O3 material was prepared by flame spray pyrolysis (FSP) technique. The 2 wt.% Ni catalyst supported on this material was characterized by XRD, N2 physisorption, TPR, H2 chemisorption and TGA, and evaluated by the dry reforming of methane (DRM). The perovskite structure was certainly formed when either Co or Mn was introduced. The Cu can generate the La2CuO4 spinel phase while the Zn showed a mixed phase of La2O3, ZnO and La(OH)3. The Ni/Co-La2O3 catalyst was more active for the DRM because of high amount of active dual sites of Ni and Co metals dispersed on the catalyst surface. The formation of La2O2CO3 during the reaction can inhibit the coke formation. The cooperation of La2O2CO3 and MnO phases in the Ni/Mn-La2O3 catalyst was promotional effect to decrease carbon deposits on the catalyst surface. The partial substitution of Co for Mn with a small content of Mn can enhance the catalytic activity and the product yield. The Ni/Mn0.05Co0.95-La2O3 catalyst showed the highest CH4 conversion, H2 yield and H2/CO ratio. The Mn inserted into the perovskite structure of LaCoO3 was an important player to change oxygen mobility within the crystal lattice to maintain a high performance of the catalyst. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Preparation of Bi2O3/TiO2–Montmorillonite Nanocomposites and Their Applications to the Photodegradation of Pentachlorophenol Nacéra Boumahdi; Amel Hadj-Ziane-Zafour; Hafsa Yaiche-Achour; Hussein Khalaf
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12421.78-87

Abstract

In the past decades, there has been a growing tendency to study the different techniques that can increase the photocatalytic efficiency as well as recyclability of new products “photocatalysts” for water treatment. In this last research the effect of bismuth addition to titanium was investigated. Bi/Ti-pillared montmorillonites have been prepared from natural Algerian bentonite exactly from deposits of Maghnia situated in the west side of the country. These nanocomposites were characterized by X-ray diffraction (XRD), Brunauer-Emmet-Teller (BET), scanning electron microscopy (SEM) methods, and Fourier Transformed Infrared (FT-IR). The photocatalytic activities have been tested for the removal of pentaclorophenol (PCP) in water. The effect of preparation conditions, the pH of the solution and photocatalysts concentration, on these activities has been investigated. It was found that the photocatalytic degradation increase by addition of bismuth in pillaring process. The Mont-Bi-Ti is shown to be the best photocatalyst in term of photocatalytic activity. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Layered Double Hydroxide Catalysts Preparation, Characterization and Applications for Process Development: An Environmentally Green Approach Ateeq Rahman; Rajasekhar Viswanadha Srirama Pullabhotla
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12195.163-193

Abstract

The adage of new generation of fine chemicals process is the best process applied in the absence of conventional methods. However, many methods use different reaction parameters, such as basic and acidic catalysts, for example oxidation, reduction, bromination, water splitting, cyanohydrin, ethoxylation, syngas, aldol condensation, Michael addition, asymmetric ring opening of epoxides, epoxidation, Wittig and Heck reaction, asymmetric ester epoxidation of fatty acids, combustion of methane, NOx reduction, biodiesel synthesis, propylene oxide polymerization. Layered Double Hydroxides (LDHs) have received considerable attention due their potential applications in flame retardant and has excellent medicinal property for reducing acidity. These catalysts are characterized using analytical techniques, such as: X-ray diffraction (XRD), Fourier-transform infrared (FT-IR), Raman spectroscopy, Thermogravimetric-Differential Thermal Analyzer (TG-DTA), Scanning electron microscope (SEM), Transmission electron microscopes (TEM), Brunauer-Emmett-Teller (BET) surface area, N2 Adsorption-desorption, Temperature programmed reduction (TPR), X-ray photoelectrons spectroscopy (XPS), which gives its overall picture of its structure, porosity, morphology, thermal stability, reusability, and activity of catalysts. LDHs catalysts have proven to be economic and environmentally friendly. The above discussed applications make these catalysts unique from Green Chemistry point of view since they are reusable, and eco-friendly catalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis of Magnetic Catalyst Derived from Oil Palm Empty Fruit Bunch for Esterification of Oleic Acid: An Optimization Study Shamala Gowri Krishnan; Fei-Ling Pua; Ee-Sann Tan
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12392.65-77

Abstract

Biomass, renewable, abundantly available and a good source of energy. The conversion of biomass waste into valuable products has received wide attention. In this study, an empty fruit bunch (oil palm EFB) supported magnetic acid catalyst for esterification reaction was successfully prepared via the one-step impregnation process. The new magnetic catalyst achieved a higher surface area of 188.87 m2/g with a total acidity of 2.4 mmol/g and identified iron oxide as g-Fe2O3. The magnetization value of 24.97 emu/g demonstrated that the superparamagnetic catalyst could be easily recovered and separated after the reaction using an external magnet. The catalytic performance of oil palm EFB supported magnetic acid catalyst was examined by esterification of oleic acid. Esterification process parameters were optimized via Response Surface Methodology (RSM) optimization tool with Box-Behnken design (BBD). The following optimum parameters were determined: an amount of 9 wt% catalyst, molar ratio of methanol to oleic acid of 12:1, reaction time of 2 h and reaction temperature of 60 °C with a maximum conversion of 94.91% was achieved. The catalyst can be recycled up to five cycles with minimal loss in its activity. The oil palm waste-based magnetic acid catalyst indicates its potential replacement to the existing solid catalysts that are economical and environmentally friendly for the esterification process in biofuel applications. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Superparamagnetic Iron Oxide Decorated Indium Hydroxide Nanocomposite: Synthesis, Characterization and Its Photocatalytic Activity C. Y. Chong; T. H. W. Lee; J. C. Juan; Mohd Rafie Johan; C. F. Loke; K. H. Ng; J. C. Lai; Teck Hock Lim
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12352.113-126

Abstract

A simple and scalable liquid-based method was developed to produce a nanocomposite photocatalyst which was comprised of Fe3O4 nanoparticles (4-5 nm) decorated indium hydroxide nanorods (mean width 33 nm and average aspect ratio 2-3). The nanocomposite was produced at 25 ℃ in water via a hydroxide-induced co-precipitation ensued by a cathodic reduction during which the non-magnetic Fe(OH)3 intermediate was reduced to magnetic Fe3O4 at 20 V within 1 h. The incorporation of Fe3O4 nanoparticles served to bestow magnetic recoverability to the photocatalyst and helped enhance visible light absorption simultaneously. Interestingly, the addition of Fe3+ led to the formation of In(OH)3 nanorods rather than the commonly observed nanocubes. In comparison to the In(OH)3 system having a band gap of 4.60 eV), the band gap of the Fe3O4/In(OH)3 nanocomposite produced was determined to be 2.85 eV using the Tauc’s plot method. The effective reduction in band gap is expected to allow better absorption of visible light which in turns should help boost its photocatalytic performance. The Fe3O4/In(OH)3 nanocomposite was structurally characterized using a combination of PXRD, FESEM, EDS, and TEM and its paramagnetic property was proven with a positive mass susceptibility measured to be 1.30´10−5 cm3.g−1. Under visible light, a photocatalytic degradation efficiency of 83% was recorded within 1 hr for the nanocomposite using methylene blue as a dye. The photocatalytically-active Fe3O4/In(OH)3 should have good potential in visible-light driven waste water degradation once further optimized. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis of Carbide Lime Waste Derived Base Catalyst (KF/CLW-Fe3O4) for Methyl Ester Production: An Optimization Study Hong Hua Lim; Fei Ling Pua; R. Othman; Yun Hin Taufiq-Yap; Shamala Gowri Krishnan
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12348.127-134

Abstract

In this paper, solid base catalyst KF/CLW-Fe3O4 was prepared from carbide lime waste, primarily calcium hydroxide with tiny amounts of carbonate and; the catalyst was used in the optimization study on the methyl ester production. The new strong base catalyst was synthesized by chemical impregnation. This catalyst was characterized by Hammett indicator analysis, Brunauer, Emmett, and Teller (BET), scanning electron microscope (SEM), X-ray diffraction (XRD) and temperature-programmed desorption (TPD) of carbon dioxide. The catalyst was further used to catalyzed the transesterification reaction to produce methyl ester. Taguchi method was used to assess the impact of catalyst at different intervals of reaction parameters, including reaction time, methanol to oil ratio, and catalyst loading. A mixed level of orthogonal array design with L9, analysis of variance (ANOVA) and signal to noise ratio were used to determine parameters that significantly impact the palm oil transesterification reaction. High methyl ester conversion was attained, and the catalyst can be easily separated and reused. KF/CLW-Fe3O4 has great potential to be used to produce methyl ester because of its high catalytic activity and environmental friendliness. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis of Porous N-doped TiO2 by Using Peroxo Sol-Gel Method for Photocatalytic Reduction of Cd(II) Diana Vanda Wellia; Dina Nofebriani; Nurul Pratiwi; Safni Safni
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12347.103-112

Abstract

Porous N-doped TiO2 photocatalyst was successfully synthesized by an environmentally friendly peroxo sol-gel method using polyethylene glycol (PEG) as a templating agent. Here, the effect of PEG addition to the aqueous peroxotitanium solutions on the structure, pore properties and photocatalytic activity of the obtained photocatalysts was systematically studied. The prepared photocatalysts were characterized by X-ray diffraction (XRD), UV-Vis diffuse reflectance spectroscopy (DRS), and Brunauer-Emmett-Teller (BET). It was found that the doping of nitrogen narrows the band gap of TiO2 leading to enhance its visible-light response. The BET analysis shows that the prepared photocatalysts have a typical mesoporous structure with pore sizes of 3–6 nm. The photocatalytic activity of the prepared photocatalysts was evaluated by photocatalytic reduction of Cd(II) in an aqueous solution under visible light irradiation. The results show that porous N-doped TiO2 with the optimal PEG addition had the highest Cd(II) reduction of 85.1% after 2.5 h irradiation in neutral aqueous solution. This significant improvement in photocatalytic activity of the prepared photocatalysts was mainly attributed to the synergistic combination of N doping and porous structure, which could actively increase the catalytic active site of this photocatalysts. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
The Production of Green Diesel Rich Pentadecane (C15) from Catalytic Hydrodeoxygenation of Waste Cooking Oil using Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 Momodou Salieu Sowe; Arda Rista Lestari; Eka Novitasari; Masruri Masruri; Siti Mariyah Ulfa
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12700.135-145

Abstract

Hydrodeoxygenation (HDO) is applied in fuel processing technology to convert bio-oils to green diesel with metal-based catalysts. The major challenges to this process are feedstock, catalyst preparation, and the production of oxygen-free diesel fuel. In this study, we aimed to synthesize Ni catalysts supported on silica-zirconia and alumina-zirconia binary oxides and evaluated their catalytic activity for waste cooking oil (WCO) hydrodeoxygenation to green diesel. Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 were synthesized by wet-impregnation and hydrodeoxygenation of WCO was done using a modified batch reactor. The catalysts were characterized using X-ray diffraction (XRD), X-ray fluorescence (XRF), and scanning electron microscopy - energy dispersive X-ray spectroscopy (SEM-EDS), and N2 isotherm adsorption-desorption analysis. Gas chromatography - mass spectrometry (GC-MS) analysis showed the formation of hydrocarbon framework n-C15 generated from the use of Ni/Al2O3-ZrO2 with the selectivity of 68.97% after a 2 h reaction. Prolonged reaction into 4 h, decreased the selectivity to 58.69%. Ni/SiO2-ZrO2 catalyst at 2 h showed selectivity of 55.39% to n-C15. Conversely, it was observed that the reaction for 4 h increased selectivity to 65.13%. Overall, Ni/Al2O3-ZrO2 and Ni/SiO2-ZrO2 catalysts produced oxygen-free green diesel range (n-C14-C18) enriched with n-C15 hydrocarbon. Reaction time influenced the selectivity to n-C15 hydrocarbon. Both catalysts showed promising hydrodeoxygenation activity via the hydrodecarboxylation pathway. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
French Fries-Like Bismuth Oxide: Physicochemical Properties, Electrical Conductivity and Photocatalytic Activity Yayuk Astuti; Fauzan Musthafa; Arnelli Arnelli; Iis Nurhasanah
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12554.146-156

Abstract

Bismuth oxide synthesis using hydrothermal method has been conducted. This study aims to examine the effect of the hydrothermal reaction time on product characteristics and photocatalytic activity in degrading methyl orange dye. Bismuth oxide synthesis was initiated by dissolving bismuth nitrate pentahydrate (Bi(NO3)3.5H2O) and Na2SO4 in a distilled water and added NaOH gradually. The solution formed was transferred into a Teflon-lined autoclave and heated at 120 °C with time variations of 8–16 h. The formation of bismuth oxide was indicated by the vibrations of the Bi−O−Bi and Bi−O groups and the crystal structure consisting of a-Bi2O3, β-Bi2O3, and g-Bi2O3. In addition, the highest photocatalytic activity can be examined through several factors, such as: content of Bi−O−Bi and Bi−OH groups, crystal structure, band gap values, morphology, and surface area, acquired as a result of the effect of hydrothermal reaction time. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 
Synthesis of Magnetic Base Catalyst from Industrial Waste for Transesterification of Palm Oil Shamala Gowri Krishnan; Fei-Ling Pua; Hong-Hua Lim
Bulletin of Chemical Reaction Engineering & Catalysis 2022: BCREC Volume 17 Issue 1 Year 2022 (March 2022)
Publisher : Department of Chemical Engineering - Diponegoro University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.9767/bcrec.17.1.12412.53-64

Abstract

Industrial waste is produced in large amounts annually; without proper planning, the waste might cause a serious threat to the environment. Hence, an industrial waste-based heterogeneous magnetic catalyst was synthesized using carbide lime waste (CLW) as raw material for biodiesel production via transesterification of palm oil. The catalyst was successfully synthesized by the one-step impregnation method and calcination at 600 °C. The synthesized catalyst, C-CLW/g-Fe2O3, was characterized by temperature-programmed desorption of carbon dioxide (CO2-TPD), scanning electron microscopy (SEM), electron dispersive X-ray spectroscopy (EDX), X-ray Diffraction (XRD), Brunauer-Emmett-Teller (BET), vibrating sample magnetometer (VSM), and Fourier transform infrared spectroscopy (FT-IR). The catalyst has a specific surface area of 18.54 m2/g and high basicity of 3,637.20 µmol/g. The catalytic performance shows that the optimum reaction conditions are 6 wt% catalyst loading, 12:1 methanol to oil molar ratio with the reaction time of 3 h at 60 °C to produce 90.5% biodiesel yield. The catalyst exhibits good catalytic activity and magnetism, indicating that the CLW can be a potential raw material for catalyst preparation and application in the biodiesel industry. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Page 1 of 3 | Total Record : 21