cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 1, No 3 (2015): November 2015" : 6 Documents clear
A survey on computer vision technology in Camera Based ETA devices Amir Ramezani Dooraki
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.40

Abstract

Electronic Travel Aid systems are expected to make impaired persons able to perform their everyday tasks such as finding an object and avoiding obstacles easier. Among ETA devices, Camera Based ETA devices are the new one and with a high potential for helping Visually Impaired Persons. With recent advances in computer science and specially computer vision, Camera Based ETA devices used several computer vision algorithms and techniques such as object recognition and stereo vision in order to help VIP to perform tasks such as reading banknotes, recognizing people and avoiding obstacles. This paper analyses and appraises a number of literatures in this area with focus on stereo vision technique. Finally, after discussing about the methods and techniques used in different literatures, it is concluded that the stereo vision is the best technique for helping VIP in their everyday navigation.
Progressive Particle Swarm Optimization Algorithm for Solving Reactive Power Problem Kanagasabai Lenin; Bhumanapally Ravindhranath Reddy; Munagala Surya Kalavathi
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.42

Abstract

In this paper a Progressive particle swarm optimization algorithm (PPS) is used to solve optimal reactive power problem. A Particle Swarm Optimization algorithm maintains a swarm of particles, where each particle has position vector and velocity vector which represents the potential solutions of the particles. These vectors are modernized from the information of global best (Gbest) and personal best (Pbest) of the swarm. All particles move in the search space to obtain optimal solution. In this paper a new concept is introduced of calculating the velocity of the particles with the help of Euclidian Distance conception. This new-fangled perception helps in finding whether the particle is closer to Pbest or Gbest and updates the velocity equation consequently. By this we plan to perk up the performance in terms of the optimal solution within a rational number of generations. The projected PPS has been tested on standard IEEE 30 bus test system and simulation results show clearly the better performance of the proposed algorithm in reducing the real power loss with control variables are within the limits.
Automatic Text Summarization Using Latent Drichlet Allocation (LDA) for Document Clustering Erwin Yudi Hidayat; Fahri Firdausillah; Khafiizh Hastuti; Ika Novita Dewi; Azhari Azhari
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.43

Abstract

In this paper, we present Latent Drichlet Allocation in automatic text summarization to improve accuracy in document clustering. The experiments involving 398 data set from public blog article obtained by using python scrapy crawler and scraper. Several steps of clustering in this research are preprocessing, automatic document compression using feature method, automatic document compression using LDA, word weighting and clustering algorithm The results show that automatic document summarization with LDA reaches 72% in LDA 40%, compared to traditional k-means method which only reaches 66%.
Short-term wind speed forecasting by an adaptive network-based fuzzy inference system (ANFIS): an attempt towards an ensemble forecasting method Moslem Yousefi; Danial Hooshyar; Amir Remezani; Khairul Salleh Mohamed Sahari; Weria Khaksar; Firas B. Ismail Alnaimi
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.45

Abstract

Accurate Wind speed forecasting has a vital role in efficient utilization of wind farms. Wind forecasting could be performed for long or short time horizons. Given the volatile nature of wind and its dependent on many geographical parameters, it is difficult for traditional methods to provide a reliable forecast of wind speed time series. In this study, an attempt is made to establish an efficient adaptive network-based fuzzy interference (ANFIS) for short-term wind speed forecasting. Using the available data sets in the literature, the ANFIS network is constructed, tested and the results are compared with that of a regular neural network, which has been forecasted the same set of dataset in previous studies. To avoid trial-and-error process for selection of the ANFIS input data, the results of autocorrelation factor (ACF) and partial auto correlation factor (PACF) on the historical wind speed data are employed. The available data set is divided into two parts. 50% for training and 50% for testing and validation. The testing part of data set will be merely used for assessing the performance of the neural network which guarantees that only unseen data is used to evaluate the forecasting performance of the network. On the other hand, validation data could be used for parameter-setting of the network if required. The results indicate that ANFIS could not outperform ANN in short-term wind speed forecasting though its results are competitive. The two methods are hybridized, though simply by weightage, and the hybrid methods shows slight improvement comparing to both ANN and ANFIS results. Therefore, the goal of future studies could be implementing ANFIS and ANNs in a more comprehensive ensemble method which could be ultimately more robust and accurate
GPU Accelerated Number Plate Localization in Crowded Situation Adhi Prahara; Andri Pranolo; Rafał Dreżewski
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.46

Abstract

Number Plate Localization (NPL) has been widely used as part of Automatic Number Plate Recognition (ANPR) system. NPL method determines the accuracy of ANPR system. Although it is a mature research, the challenge stills persist especially in crowded situation where many vehicles present. Therefore, a method is proposed to localize number plate in crowded situation. The proposed NPL method uses vertical edge density to extract potential region of number plate then detect the number plate using combination of Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM). The method employs GPU to deal with multiple number plate detection, to handle multi-scale detection window, and to perform real time detection. The test result shows good results, 0.9883 value of AUC (Area Under Curve), and 0.9362 of BAC (Balance Accuracy). Moreover, potential real time detection is foreseen because total process is executed in less than 50 ms. Errors are mainly caused by background that contain letters, non-standard number plate and highly covered number plate
Association Rule Algorithm Sequential Pattern Discovery using Equivalent Classes (SPADE) to Analyze the Genesis Pattern of Landslides in Indonesia Muhammad Muhajir; Berky Rian Efanna
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.50

Abstract

Landslide is one of movement of soil, rock, soil creep, and rock debris that occurred the move of the slopes. It is caused by steep slopes, high rainfall, deforestation, mining activities, and erosion. The impacts of the landslide are loss of property, damage to facilities such as homes and buildings, casualties, psychological trauma, disrupted economic and environmental damage. Based on the impacts of landslide, mitigation required to take early precautions are to know how the pattern of association between the sequence of events landslides and to know how the associative relationship pattern of earthquakes. Based on the impacts, the results of this research is associative relationship pattern is obtained from data flood that occurs in Indonesia, namely in case of heavy rain will occur labile soil structure to support the value of 0.37, confidence level of 41% and the power of formed ruled is 1.02.

Page 1 of 1 | Total Record : 6