cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 2, No 2 (2016): July 2016" : 6 Documents clear
SLA based cloud service composition using genetic algorithm N Sasikaladevi
International Journal of Advances in Intelligent Informatics Vol 2, No 2 (2016): July 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i2.58

Abstract

Cloud computing tends to provide high quality on-demand services to the users. Numerous services are evolving today. Functionally similar services are having different non-functional properties such as reliability, availability, accessibility, response time and cost. A single service is inadequate for constructing the business process. Such business process is modeled as composite service. Composite service consists of several atomic services connected by workflow patterns. Selecting services for service composition with the constraints specified in Service Level Agreement is the NP-hard problem. Such a cloud service composition problem is modeled in this paper. Genetic based cloud service composition algorithm (GCSC) is proposed. Proposed algorithm is compared with the existing genetic based cloud service composition algorithm based on average utility rate and convergence time. It is proved that the proposed algorithm provides better performance as compared to the existing cloud service composition algorithm.
Comparative analysis of multiple target tracking methods Michael Kamaraj Devadoss; Balakrishnan Ganesan
International Journal of Advances in Intelligent Informatics Vol 2, No 2 (2016): July 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i2.55

Abstract

Many applications such as intelligent transportation, video surveillance, robotics of computer vision mainly depend on task of multiple object tracking. It includes the process of detection, classifications and tracking. The main focus of the study is to develop an efficient and effective multiple target tracking methods to solve the issues of illumination changes, occlusions and affinity matching. Accordingly, the various multiple target tracking methods are tested and evaluated using the metrics on publicly available datasets from which it is obvious that the outcome of the global energy minimization and optimization techniques is comparatively better than any other existing techniques in all aspects. This comparative study work will also help in better understanding of the problem, knowledge of the methods and experimental evaluation skill for further research works.
Analysis of energy efficient connected target coverage algorithm for static and dynamic nodes in IWSNs Anupam Mittal; Ruchi Aggarwal; Sapinder Kaur
International Journal of Advances in Intelligent Informatics Vol 2, No 2 (2016): July 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i2.65

Abstract

Today breakthroughs in wireless technologies have greatly spurred the emergence of industrial wireless sensor networks (IWSNs).To facilitate the adaptation of IWSNs to industrial applications, concerns about networks full coverage and connectivity must be addressed to fulfill reliability and real time requirements. Although connected target coverage algorithms have been studied notice both limitations and applicability of various coverage areas from an industry viewpoint. In this paper is discuss the two energy efficiency connected target coverage (CTC) algorithms CWGC(Communication Weighted Greedy Cover) and OTTC(Overlapped Target and Connected Coverage) algorithm based on dynamic node to resolve the problem of Coverage improvement. This paper uses the simulation in MATLAB represent the performance of two CTC algorithms with Dynamic node to improve network lifetime and low energy consumption and quality of service. Compare the dynamic nodes results with static nodes results
A new model for threat assessment in data fusion based on fuzzy evidence theory Ehsan Azimirad; Javad Haddadnia
International Journal of Advances in Intelligent Informatics Vol 2, No 2 (2016): July 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i2.56

Abstract

In this paper a new method for threat assessment is proposed based on Fuzzy Evidence Theory. The most widely classical and intelligent methods used for threat assessment systems will be Evidence or Dempster Shafer and Fuzzy Sets Theories. The disadvantage of both methods is failing to calculate of uncertainty in the data from the sensors and the poor reliability of system. To fix this flaw in the system of dynamic targets threat assessment is proposed fuzzy evidence theory as a combination of both Dempster- Shafer and Fuzzy Sets Theories. In this model, the uncertainty in input data from the sensors and the whole system is measured using the best measure of the uncertainty. Also, a comprehensive comparison is done between the uncertainty of fuzzy model and fuzzy- evidence model (proposed method). This method applied to a real time scenario for air threat assessment. The simulation results show that this method is reasonable, effective, accuracy and reliability.
Generated rules for AIDS and e-learning classifier using rough set approach Sarina Sulaiman; Nor Amalina Abdul Rahim; Andri Pranolo
International Journal of Advances in Intelligent Informatics Vol 2, No 2 (2016): July 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i2.74

Abstract

The emergence and growth of internet usage has accumulated an extensive amount of data. These data contain a wealth of undiscovered valuable information and problems of incomplete data set may lead to observation error. This research explored a technique to analyze data that transforms meaningless data to meaningful information. The work focused on Rough Set (RS) to deal with incomplete data and rules derivation. Rules with high and low left-hand-side (LHS) support value generated by RS were used as query statements to form a cluster of data. The model was tested on AIDS blog data set consisting of 146 bloggers and E-Learning@UTM (EL) log data set comprising 23105 URLs. 5-fold and 10-fold cross validation were used to split the data. Naïve algorithm and Boolean algorithm as discretization techniques and Johnson’s algorithm (Johnson) and Genetic algorithm (GA) as reduction techniques were employed to compare the results. 5-fold cross validation tended to suit AIDS data well while 10-fold cross validation was the best for EL data set. Johnson and GA yielded the same number of rules for both data sets. These findings are significant as evidence in terms of accuracy that was achieved using the proposed model
RETRACTED: Implementation of reversible jump MCMC algorithm to segment the piecewise Polynomial Regression Suparman Suparman
International Journal of Advances in Intelligent Informatics Vol 2, No 2 (2016): July 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v2i2.62

Abstract

RETRACTEDFollowing a rigorous, carefully concerns and considered review of the article published in International Journal of Advances in Intelligent Informatics to article entitled “Implementation of reversible jump MCMC algorithm to segment the piecewise Polynomial Regression” Vol 2, No 2, pp. 88-93, July 2016, DOI: http://dx.doi.org/10.26555/ijain.v2i2.62.This paper has been found to be in violation of the International Journal of Advances in Intelligent Informatics Publication principles and has been retracted.The article contained redundant material, the editor investigated and found that the paper published in International Journal of Mathematical, Computational, Physical, Electrical and Computer Engineering, Vol. 10, No. 5 (2016), pp. 232-235, URL: http://scholar.waset.org/1999.7/10004307, entitled "Segmentation of Piecewise Polynomial Regression Model by Using Reversible Jump MCMC Algorithm".The document and its content has been removed from International Journal of Advances in Intelligent Informatics, and reasonable effort should be made to remove all references to this article.

Page 1 of 1 | Total Record : 6