cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 6 Documents
Search results for , issue "Vol 3, No 2 (2017): July 2017" : 6 Documents clear
Systematic feature analysis on timber defect images Ummi Rabaah Hashim; Siti Zaiton Mohd Hashim; Azah Kamilah Muda; Kasturi Kanchymalay; Intan Ermahani Abd Jalil; Muhammad Hakim Othman
International Journal of Advances in Intelligent Informatics Vol 3, No 2 (2017): July 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i2.94

Abstract

Feature extraction is unquestionably an important process in a pattern recognition system. A defined set of features makes the identification task more efficiently. This paper addresses the extraction and analysis of features based on statistical texture to characterize images of timber defects. A series of procedures including feature extraction and feature analysis was executed to construct an appropriate feature set that could significantly separate amongst defects and clear wood classes. The feature set aimed for later use in a timber defect detection system. For Accessing the discrimination capability of the features extracted, visual exploratory analysis and confirmatory statistical analysis were performed on defect and clear wood images of Meranti (Shorea spp.) timber species. Results from the analysis demonstrated that there was a significant distinction between defect classes and clear wood utilizing the proposed set of texture features.
Performance IEEE 802.14.5 and zigbee protocol on realtime monitoring augmented reality based wireless sensor network system Arda Surya Editya; Surya Sumpeno; Istas Pratomo
International Journal of Advances in Intelligent Informatics Vol 3, No 2 (2017): July 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i2.99

Abstract

The internet of Thing (IoT)technology has much development in this era. It has various wireless media transmission systems such as ESP and XBEE. Some IoT device can monitor website or application. On the other hand, Augmented Reality (AR) is a technology that used more on the entertainment sector. Here, we try to use AR to monitor the xbee based IoT device. As a result, there is the different result between Zigbee Protocol and IEEE 802.14.5 real time monitoring system. The optimum estimation of realtime time tolerance of those monitoring systems is >1500 ms (IEEE 804.14.5) and > 50 ms (Zigbee protocol).
Wavelet discrete transform, ANFIS and linear regression for short-term time series prediction of air temperature Devi Munandar
International Journal of Advances in Intelligent Informatics Vol 3, No 2 (2017): July 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i2.101

Abstract

This paper investigates the ability of Discrete Wavelet Transform and Adaptive Network-Based Fuzzy Inference System in time-series data modeling of weather parameters. Plotting predicted data results on Linear Regression is used as the baseline of the statistical model. Data were tested in every 10 minutes interval on weather station of Bungus port in Padang, Indonesia. Mean absolute errors (MAE), the coefficient of determination (R2), Pearson correlation coefficient (r) and root mean squared error (RMSE) are used as performance indicators. The result of Plotting ANFIS data against linear regression using 1-input data is the optimal values combination of output predictions.
K-Means cluster analysis in earthquake epicenter clustering Pepi Novianti; Dyah Setyorini; Ulfasari Rafflesia
International Journal of Advances in Intelligent Informatics Vol 3, No 2 (2017): July 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i2.100

Abstract

Bengkulu Province, Indonesia, which lies in two active faults, Semangko fault and Mentawai fault, is an area that has high seismic activity. As earthquake-prone area, the characteristic of each earthquake in Bengkulu Province needs to be studied. This paper presents the earthquake epicenter clustering in Bengkulu Province. Tectonic earthquake data at Bengkulu Province and surrounding areas from January 1970 to December 2015 are used. The data is taken from single-station Agency Meteorology, Climatology and Geophysics (BMKG) Kepahiang Bengkulu. K-Means clustering using Euclidean distance method is used in this analysis. The variables are latitude, longitude and magnitude. The optimum number of cluster is determined using Krzanowski and Lai (KL) index which is 7. The analysis for each clustering experiment with variation number of cluster is presented.
Circular(2)-linear regression analysis with iteration order manipulation Muhamad Irpan Nurhab; Badaruddin Nurhab; Tuti Purwaningsih; Ming Foey Teng
International Journal of Advances in Intelligent Informatics Vol 3, No 2 (2017): July 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i2.90

Abstract

Data in the form of time cycle or point position to the angle of possibility is no longer suitable to be analyzed using classical linear statistic method because the direction and the angle influence the position between one data with other data. This paper aims to examine the comparison of Linear Regression Analysis with Circular Regression Analysis. The writing method used is literature review using simulation data. Data simulation and analysis is done with the help of R program. The results showed that circular data is better analyzed by Circular Regression Analysis rather than Classical Linear Regression Analysis. The use of classical linear statistic method is not recommended due to the direction and the angle influence the position between one data with other data.
Spatial data modeling in disposable income per capita in china using nationwide spatial autoregressive (SAR) Tuti Purwaningsih; Anusua Ghosh; Chumairoh Chumairoh
International Journal of Advances in Intelligent Informatics Vol 3, No 2 (2017): July 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i2.93

Abstract

China as a country became the economic center of the world. However, with a population of 1.3 billion, China's per capita income is still at number 80 in the world. In the world, considering the imbalance between town and country with 100 million people still living in poverty. Thus, to address this imbalance, it is necessary to study the condition in depth, because income per capita is often used as a benchmark to measure the prosperity of a country. With greater and equitable income per capita, the country will be judged increasingly affluent. Two factors, mainly industry and tourism, play an important role in the economic progress in China. These are include Per capita Disposable Income Nationwide (yuan), Total Value of Exports of operating units (1,000 USD), Registered Unemployed Person in Urban Area (10000 person), Foreign Exchange Earning from International tourism(in millions USD) and Number of Overseas Visitor Arrivals (million person/time). Thus, it is necessary to investigate the influence of these factors to increase per capita income. Since the economic development of a region usually affect the surrounding area, this study aims to include spatial effects, using Spatial Autoregressive (SAR) Model. The results suggest that the per capita income affected by the Tourism factor is about 58.65% (R-squared).

Page 1 of 1 | Total Record : 6