cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 6, No 1 (2020): March 2020" : 9 Documents clear
Emotion brain-computer interface using wavelet and recurrent neural networks Esmeralda Contessa Djamal; Hamid Fadhilah; Asep Najmurrokhman; Arlisa Wulandari; Faiza Renaldi
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.432

Abstract

Brain-Computer Interface (BCI) has an intermediate tool that is usually obtained from EEG signal information. This paper proposed the BCI to control a robot simulator based on three emotions for five seconds by extracting a wavelet function in advance with Recurrent Neural Networks (RNN). Emotion is amongst variables of the brain that can be used to move external devices. BCI's success depends on the ability to recognize one person’s emotions by extracting their EEG signals. One method to appropriately recognize EEG signals as a moving signal is wavelet transformation. Wavelet extracted EEG signal into theta, alpha, and beta wave, and consider them as the input of the RNN technique. Connectivity between sequences is accomplished with Long Short-Term Memory (LSTM). The study also compared frequency extraction methods using Fast Fourier Transform (FFT). The results showed that by extracting EEG signals using Wavelet transformations, we could achieve a confident accuracy of 100% for the training data and 70.54% of new data. While the same RNN configuration without pre-processing provided 39% accuracy, even adding FFT would only increase it to 52%. Furthermore, by using features of the frequency filter, we can increase its accuracy from 70.54% to 79.3%. These results showed the importance of selecting features because of RNNs concern to sequenced its inputs. The use of emotional variables is still relevant for instructions on BCI-based external devices, which provide an average computing time of merely 0.235 seconds.
Trophic state assessment using hybrid classification tree-artificial neural network Ronnie Sabino Concepcion II; Pocholo James Mission Loresco; Rhen Anjerome Rañola Bedruz; Elmer Pamisa Dadios; Sandy Cruz Lauguico; Edwin Sybingco
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.408

Abstract

The trophic state is one of the significant environmental impacts that must be monitored and controlled in any aquatic environment. This phenomenon due to nutrient imbalance in water strengthened with global warming, inhibits the natural system to progress. With eutrophication, the mass of algae in the water surface increases and results to lower dissolved oxygen in the water that is essential for fishes. Numerous limnological and physical features affect the trophic state and thus require extensive analysis to asses it. This paper proposed a model of hybrid classification tree-artificial neural network (CT-ANN) to assess the trophic state based on the selected significant features. The classification tree was used as a multidimensional reduction technique for feature selection, which eliminates eight original features. The remaining predictors having high impacts are chlorophyll-a, phosphorus and Secchi depth. The two-layer ANN with 20 artificial neurons was constructed to assess the trophic state of input features. The neural network was modeled based on the key parameters of learning time, cross-entropy, and regression coefficient. The ANN model used to assess trophic state based on 11 predictors resulted in 81.3% accuracy. The modeled hybrid classification tree-ANN based on 3 predictors resulted to 88.8% accuracy with a cross-entropy performance of 0.096495. Based on the obtained result, the modeled hybrid classification tree-ANN provides higher accuracy in assessing the trophic state of the aquaponic system.
Self-supervised pre-training of CNNs for flatness defect classification in the steelworks industry Filippo Galli; Antonio Ritacco; Giacomo Lanciano; Marco Vannocci; Valentina Colla; Marco Vannucci
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.410

Abstract

Classification of surface defects in the steelworks industry plays a significant role in guaranteeing the quality of the products. From an industrial point of view, a serious concern is represented by the hot-rolled products shape defects and particularly those concerning the strip flatness. Flatness defects are typically divided into four sub-classes depending on which part of the strip is affected and the corresponding shape. In the context of this research, the primary objective is evaluating the improvements of exploiting the self-supervised learning paradigm for defects classification, taking advantage of unlabelled, real, steel strip flatness maps. Different pre-training methods are compared, as well as architectures, taking advantage of well-established neural subnetworks, such as Residual and Inception modules. A systematic approach in evaluating the different performances guarantees a formal verification of the self-supervised pre-training paradigms evaluated hereafter. In particular, pre-training neural networks with the EgoMotion meta-algorithm shows classification improvements over the AutoEncoder technique, which in turn is better performing than a Glorot weight initialization.
Serial and parallel implementation of Needleman-Wunsch algorithm Yun Sup Lee; Yu Sin Kim; Roger Luis Uy
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.361

Abstract

Needleman-Wunsch dynamic programming algorithm measures the similarity of the pairwise sequence and finds the optimal pair given the number of sequences. The task becomes nontrivial as the number of sequences to compare or the length of sequences increases. This research aims to parallelize the computation involved in the algorithm to speed up the performance using CUDA. However, there is a data dependency issue due to the property of a dynamic programming algorithm. As a solution, this research introduces the heterogeneous anti-diagonal approach, which benefits from the interaction between the serial implementation on CPU and the parallel implementation on GPU. We then measure and compare the computation time between the proposed approach and a straightforward serial approach that uses CPU only. Measurements of computation times are performed under the same experimental setup and using various pairwise sequences at different lengths. The experiment showed that the proposed approach outperforms the serial method in terms of computation time by approximately three times. Moreover, the computation time of the proposed heterogeneous anti-diagonal approach increases gradually despite the big increments in sequence length, whereas the computation time of the serial approach grows rapidly.
An effective hybrid ant lion algorithm to minimize mean tardiness on permutation flow shop scheduling problem Dana Marsetiya Utama; Dian Setiya Widodo; Muhammad Faisal Ibrahim; Shanty Kusuma Dewi
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.385

Abstract

This article aimed to develop an improved Ant Lion algorithm. The objective function was to minimize the mean tardiness on the flow shop scheduling problem with a focus on the permutation flow shop problem (PFSP). The Hybrid Ant Lion Optimization Algorithm (HALO) with local strategy was proposed, and from the total search of the agent, the NEH-EDD algorithm was applied. Moreover, the diversity of the nominee schedule was improved through the use of swap mutation, flip, and slide to determine the best solution in each iteration. Finally, the HALO was compared with some algorithms, while some numerical experiments were used to show the performances of the proposed algorithms. It is important to note that comparative analysis has been previously conducted using the nine variations of the PFSSP problem, and the HALO obtained was compared to other algorithms based on numerical experiments.
Multi-objective clustering algorithm using particle swarm optimization with crowding distance (MCPSO-CD) Alwatben Batoul Rashed; Hazlina Hamdan; Nurfadhlina Mohd Sharef; Md Nasir Sulaiman; Razali Yaakob; Mansir Abubakar
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.366

Abstract

Clustering, an unsupervised method of grouping sets of data, is used as a solution technique in various fields to divide and restructure data to become more significant and transform them into more useful information. Generally, clustering is difficult and complex phenomenon, where the appropriate numbers of clusters are always unknown, comes with a large number of potential solutions, and as well the datasets are unsupervised. These problems can be addressed by the Multi-Objective Particle Swarm Optimization (MOPSO) approach, which is commonly used in addressing optimization problems. However, MOPSO algorithm produces a group of non-dominated solutions which make the selection of an “appropriate” Pareto optimal or non-dominated solution more difficult. According to the literature, crowding distance is one of the most efficient algorithms that was developed based on density measures to treat the problem of selection mechanism for archive updates. In an attempt to address this problem, the clustering-based method that utilizes crowding distance (CD) technique to balance the optimality of the objectives in Pareto optimal solution search is proposed. The approach is based on the dominance concept and crowding distances mechanism to guarantee survival of the best solution. Furthermore, we used the Pareto dominance concept after calculating the value of crowding degree for each solution. The proposed method was evaluated against five clustering approaches that have succeeded in optimization that comprises of K-means Clustering, MCPSO, IMCPSO, Spectral clustering, Birch, and average-link algorithms. The results of the evaluation show that the proposed approach exemplified the state-of-the-art method with significant differences in most of the datasets tested.
Classification of wood defect images using local binary pattern variants Rahillda Nadhirah Norizzaty Rahiddin; Ummi Rabaah Hashim; Nor Haslinda Ismail; Lizawati Salahuddin; Ngo Hea Choon; Siti Normi Zabri
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.392

Abstract

This paper presents an analysis of the statistical texture representation of the Local Binary Pattern (LBP) variants in the classification of wood defect images. The basic and variants of the LBP feature set that was constructed from a stage of feature extraction processes with the Basic LBP, Rotation Invariant LBP, Uniform LBP, and Rotation Invariant Uniform LBP. For significantly discriminating, the wood defect classes were further evaluated with the use of different classifiers. By comparing the results of the classification performances that had been conducted across the multiple wood species, the Uniform LBP was found to have demonstrated the highest accuracy level in the classification of the wood defects.
Flash communication pattern analysis of fireflies based on computer vision Thanaban Tathawee; Wandee Wattanachaiyingcharoen; Anantachai Suwannakom; Surisak Prasarnpun
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.367

Abstract

Previous methods for detecting the flashing behavior of fireflies were using either a photomultiplier tube, a stopwatch, or videography. Limitations and problems are associated with these methods, i.e., errors in data collection and analysis, and it is time-consuming. This study aims to applied a computer vision approach to reduce the time of data collection and analysis as compared to the videography methods by illuminance calculation, time of flash occurrence, and optimize the position coordinate automatically and tracking each firefly individually. The Validation of the approach was performed by comparing the flashing data of male fireflies, Sclerotia aquatilis that was obtained from the analysis of the behavioral video. The pulse duration, flash interval, and flash patterns of S. aquatilis were similar to a reference study. The accuracy ratio of the tracking algorithm for tracking multiple fireflies was 0.94. The time consumption required to analyze the video decreased up to 96.82% and 76.91% when compared with videography and the stopwatch method, respectively. Therefore, this program could be employed as an alternative technique for the study of fireflies flashing behavior.
Bottom-up visual attention model for still image: a preliminary study Adhi Prahara; Murinto Murinto; Dewi Pramudi Ismi
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.469

Abstract

The philosophy of human visual attention is scientifically explained in the field of cognitive psychology and neuroscience then computationally modeled in the field of computer science and engineering. Visual attention models have been applied in computer vision systems such as object detection, object recognition, image segmentation, image and video compression, action recognition, visual tracking, and so on. This work studies bottom-up visual attention, namely human fixation prediction and salient object detection models. The preliminary study briefly covers from the biological perspective of visual attention, including visual pathway, the theory of visual attention, to the computational model of bottom-up visual attention that generates saliency map. The study compares some models at each stage and observes whether the stage is inspired by biological architecture, concept, or behavior of human visual attention. From the study, the use of low-level features, center-surround mechanism, sparse representation, and higher-level guidance with intrinsic cues dominate the bottom-up visual attention approaches. The study also highlights the correlation between bottom-up visual attention and curiosity.

Page 1 of 1 | Total Record : 9