cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 6, No 2 (2020): July 2020" : 9 Documents clear
Fingerprint recognition based on shark smell optimization and genetic algorithm Bakhan Tofiq Ahmed; Omar Younis Abdulhameed
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.502

Abstract

Fingerprint recognition is a dominant form of biometric due to its distinctiveness. The study aims to extract and select the best features of fingerprint images, and evaluate the strength of the Shark Smell Optimization (SSO) and Genetic Algorithm (GA) in the search space with a chosen set of metrics. The proposed model consists of seven phases namely, enrollment, image preprocessing by using weighted median filter, feature extraction by using SSO, weight generation by using Chebyshev polynomial first kind (CPFK), feature selection by using GA, creation of a user’s database, and matching features by using Euclidean distance (ED). The effectiveness of the proposed model’s algorithms and performance is evaluated on 150 real fingerprint images that were collected from university students by the ZKTeco scanner at Sulaimani city, Iraq. The system’s performance was measured by three renowned error rate metrics, namely, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Correct Verification Rate (CVR). The experimental outcome showed that the proposed fingerprint recognition model was exceedingly accurate recognition because of a low rate of both FAR and FRR, with a high CVR percentage gained which was 0.00, 0.00666, and 99.334%, respectively. This finding would be useful for improving biometric secure authentication based fingerprint. It is also possibly applied to other research topics such as fraud detection, e-payment, and other real-life applications authentication.
Hybrid deep neural network for Bangla automated image descriptor Md Asifuzzaman Jishan; Khan Raqib Mahmud; Abul Kalam Al Azad; Md Shahabub Alam; Anif Minhaz Khan
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.499

Abstract

Automated image to text generation is a computationally challenging computer vision task which requires sufficient comprehension of both syntactic and semantic meaning of an image to generate a meaningful description. Until recent times, it has been studied to a limited scope due to the lack of visual-descriptor dataset and functional models to capture intrinsic complexities involving features of an image. In this study, a novel dataset was constructed by generating Bangla textual descriptor from visual input, called Bangla Natural Language Image to Text (BNLIT), incorporating 100 classes with annotation. A deep neural network-based image captioning model was proposed to generate image description. The model employs Convolutional Neural Network (CNN) to classify the whole dataset, while Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) capture the sequential semantic representation of text-based sentences and generate pertinent description based on the modular complexities of an image. When tested on the new dataset, the model accomplishes significant enhancement of centrality execution for image semantic recovery assignment. For the experiment of that task, we implemented a hybrid image captioning model, which achieved a remarkable result for a new self-made dataset, and that task was new for the Bangladesh perspective. In brief, the model provided benchmark precision in the characteristic Bangla syntax reconstruction and comprehensive numerical analysis of the model execution results on the dataset.
Lettuce life stage classification from texture attributes using machine learning estimators and feature selection processes Sandy Cruz Lauguico; Ronnie II Sabino Concepcion; Jonnel Dorado Alejandrino; Rogelio Ruzcko Tobias; Elmer Pamisa Dadios
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.466

Abstract

Classification of lettuce life or growth stages is an effective tool for measuring the performance of an aquaponics system. It determines the balance in water nutrients, adequate temperature and lighting, other environmental factors, and the system’s productivity to sustain cultivars. This paper proposes a classification of lettuce life stages planted in an aquaponics system. The classification was done using the texture features of the leaves derived from machine vision algorithms. The attributes underwent three different feature selection processes, namely: Univariate Selection (US), Recursive Feature Elimination (RFE), and Feature Importance (FI) to determine the four most significant features from the original eight attributes. The features selected were used for training four estimators from Decision Trees Classifier (DTC), Gaussian Naïve Bayes (GNB), Stochastic Gradient Descent (SGD), and Linear Discriminant Analysis (LDA). The models trained using DTC and SGD were then optimized as they have hyperparameters for tuning. A comparative analysis among Machine Learning (ML) algorithms was conducted to identify the best-performing model with the given application. The best features were derived from US and FI as they have the same top four features using the DTC estimator optimized with the hyperparameters tuned to max depth having 5, criterion equated to ‘Gini', and splitter was set to 'Best'. The accuracy obtained from cross-validation evaluation resulted in 87.92%. Considering consistency with hold-out validation, LDA outperforms optimized DTC even with lower accuracy of 86.67%. This accuracy of LDA outperformed DTC due to its sufficient fit for generalizing the testing data on classifying lettuce growth stage.
Resource allocation model for grid computing environment Ardi Pujiyanta; Lukito Edi Nugroho; Widyawan Widyawan
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.496

Abstract

Grid computing is a collection of heterogeneous resources that is highly dynamic and unpredictable. It is typically used for solving scientific or technical problems that require a large number of computer processing cycles or access to substantial amounts of data. Various resource allocation strategies have been used to make resource use more productive, with subsequent distributed environmental performance increases. The user sends a job by providing a predetermined time limit for running that job. Then, the scheduler gives priority to work according to the request and scheduling policy and places it in the waiting queue. When the resource is released, the scheduler selects the job from the waiting queue with a specific algorithm. Requests will be rejected if the required resources are not available. The user can re-submit a new request by modifying the parameter until available resources can be found. Eventually, there is a decrease in idle resources between work and resource utilization, and the waiting time will increase. An effective scheduling policy is required to improve resource use and reduce waiting times. In this paper, the FCFS-LRH method is proposed, where jobs received will be sorted by arrival time, execution time, and the number of resources needed. After the sorting process, the work will be placed in a logical view, and the job will be sent to the actual resource when it executes. The experimental results show that the proposed model can increase resource utilization by 1.34% and reduce waiting time by 20.47% when compared to existing approaches. This finding could be beneficially implemented in cloud systems resource allocation management.
Performances of proposed normalization algorithm for iris recognition Yessi Jusman; Siew Cheok Ng; Khairunnisa Hasikin
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.397

Abstract

Iris recognition has very high recognition accuracy in comparison with many other biometric features. The iris pattern is not the same even right and left eye of the same person. It is different and unique. This paper proposes an algorithm to recognize people based on iris images. The algorithm consists of three stages. In the first stage, the segmentation process is using circular Hough transforms to find the region of interest (ROI) of given eye images. After that, a proposed normalization algorithm is to generate the polar images than to enhance the polar images using a modified Daugman’s Rubber sheet model. The last step of the proposed algorithm is to divide the enhance the polar image to be 16 divisions of the iris region. The normalized image is 16 small constant dimensions. The Gray-Level Co-occurrence Matrices (GLCM) technique calculates and extracts the normalized image’s texture feature. Here, the features extracted are contrast, correlation, energy, and homogeneity of the iris. In the last stage, a classification technique, discriminant analysis (DA), is employed for analysis of the proposed normalization algorithm. We have compared the proposed normalization algorithm to the other nine normalization algorithms. The DA technique produces an excellent classification performance with 100% accuracy. We also compare our results with previous results and find out that the proposed iris recognition algorithm is an effective system to detect and recognize person digitally, thus it can be used for security in the building, airports, and other automation in many applications.
Classifying Barako coffee leaf diseases using deep convolutional models Francis Jesmar Perez Montalbo; Alexander Arsenio Hernandez
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.495

Abstract

This work presents the application of recent Deep Convolutional Models (DCM) to classify Barako leaf diseases. Several selected DCMs performed image classification tasks using Transfer Learning and Fine-Tuning, together with data preprocessing and augmentation. The collected dataset used totals to 4,667. Each labeled into four different classes, which included Coffee Leaf Rust (CLR), Cercospora Leaf Spots (CLS), Sooty Molds (SM), and Healthy Leaves (HL). The DCMs were trained using the partial 4,023 images and validated with the remaining 644. The classification results of the trained models VGG16, Xception, and ResNetV2-152 attained overall accuracies of 97%, 95%, and 91%, respectively. By comparing in terms of True Positive Rate (TPR), we found that Xception has the highest number of correct classifications of CLR, VGG16 with SM, and CLS, while ResNetV2-152 with the lowest TPR for CLR. The evaluated results indicate that the use of Deep Convolutional Models with an adequate amount of data, proper fine-tuning, preprocessing, and transfer learning can yield efficient classifiers for identifying several Barako leaf diseases. This work primarily contributes to the growing field of deep learning, specifically for helping farmers improve their diagnostic process by providing a solution that can automatically classify Barako leaf diseases.
Android skin cancer detection and classification based on MobileNet v2 model Adi Wibowo; Cahyo Adhi Hartanto; Panji Wisnu Wirawan
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.492

Abstract

The latest developments in the smartphone-based skin cancer diagnosis application allow simple ways for portable melanoma risk assessment and diagnosis for early skin cancer detection. Due to the trade-off problem (time complexity and error rate) on using a smartphone to run a machine learning algorithm for image analysis, most of the skin cancer diagnosis apps execute the image analysis on the server. In this study, we investigate the performance of skin cancer images detection and classification on android devices using the MobileNet v2 deep learning model. We compare the performance of several aspects; object detection and classification method, computer and android based image analysis, image acquisition method, and setting parameter. Skin cancer actinic Keratosis and Melanoma are used to test the performance of the proposed method. Accuracy, sensitivity, specificity, and running time of the testing methods are used for the measurement. Based on the experiment results, the best parameter for the MobileNet v2 model on android using images from the smartphone camera produces 95% accuracy for object detection and 70% accuracy for classification. The performance of the android app for object detection and classification model was feasible for the skin cancer analysis. Android-based image analysis remains within the threshold of computing time that denotes convenience for the user and has the same performance accuracy with the computer for the high-quality images. These findings motivated the development of disease detection processing on android using a smartphone camera, which aims to achieve real-time detection and classification with high accuracy.
The improvement of uncertainty measurements accuracy in sensor networks based on fuzzy dempster-shafer theory Ehsan Azimirad; Seyyed Reza Movahhed Ghodsinya
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.461

Abstract

Threat Assessment is one of the most important components in combat management systems. However, uncertainty is one of the problems that occur in the input data of these systems that have been provided using several sensors in sensor networks. In literature, there are some theories that state and model uncertainty in the information. One of the new methods is the Fuzzy Dempster-Shafer Theory. In this paper, a model-based uncertainty is presented in the air defense system based on the Fuzzy Dempster-Shafer Theory to measure uncertainty and its accuracy. This model uses the two concepts naming of the Fuzzy Sets Theory, and the Dempster-Shafer Theory. The input parameters to sensors are fuzzy membership functions, and the basic probability assignment values are earned from the Dempster-Shafer Theory. Therefore, in this paper, the combination of two methods has been used to calculate uncertainty in the air defense system. By using these methods and the output of the Dempster-Shafer theory are calculated and presented the uncertainty diagrams. The advantage of the combination of two theories is the better modeling of uncertainties. This makes that the output of the air defense system is more reliable and accurate. In this method, the air defense system’s total uncertainty is measured using the best uncertainty measure based on the Fuzzy Dempster-Shafer Theory. The simulation results show that this new method has increased the accuracy to 97% that is more computational toward other theories. This matter significantly increases the computational accuracy of the air defense system in targets threat assessment.
Mixture gaussian V2 based microscopic movement detection of human spermatozoa Ariyono Setiawan; I Gede Susrama Mas Diyasa; Moch Hatta; Eva Yulia Puspaningrum
International Journal of Advances in Intelligent Informatics Vol 6, No 2 (2020): July 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i2.507

Abstract

Healthy and superior sperm is the main requirement for a woman to get pregnant. To find out how the quality of sperm is needed several checks. One of them is a sperm analysis test to see the movement of sperm objects, the analysis is observed using a microscope and calculated manually. The first step in analyzing the scheme is detecting and separating sperm objects. This research is detecting and calculating sperm movements in video data. To detect moving sperm, the background processing of sperm video data is essential for the success of the next process. This research aims to apply and compare some background subtraction algorithms to detect and count moving sperm in microscopic videos of sperm fluid, so we get a background subtraction algorithm that is suitable for the case of sperm detection and sperm count. The research methodology begins with the acquisition of sperm video data. Then, preprocessing using a Gaussian filter, background subtraction, morphological operations that produce foreground masks, and compared with moving sperm ground truth images for validation of the detection results of each background subtraction algorithm. It also shows that the system has been able to detect and count moving sperm. The test results show that the MoG (Mixture of Gaussian) V2 (2 Dimension Variable) algorithm has an f-measure value of 0.9449 and has succeeded in extracting sperm shape close to its original form and is superior compared to other methods. To conclude, the sperm analysis process can be done automatically and efficiently in terms of time.

Page 1 of 1 | Total Record : 9