cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 6, No 3 (2020): November 2020" : 9 Documents clear
A new family of kernels from the beta polynomial kernels with applications in density estimation Israel Uzuazor Siloko; Wilson Nwankwo; Edith Akpevwe Siloko
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.456

Abstract

One of the fundamental data analytics tools in statistical estimation is the non-parametric kernel method that involves probability estimates production. The method uses the observations to obtain useful statistical information to aid the practicing statistician in decision making and further statistical investigations. The kernel techniques primarily examine essential characteristics in a data set, and this research aims to introduce new kernel functions that can easily detect inherent properties in any given observations. However, accurate application of kernel estimator as data analytics apparatus requires the kernel function and smoothing parameter that regulates the level of smoothness applied to the estimates. A plethora of kernel functions of different families and smoothing parameter selectors exist in the literature, but no one method is universally acceptable in all situations. Hence, more kernel functions with smoothing parameter selectors have been propounded customarily in density estimation. This article proposes a distinct kernel family from the beta polynomial kernel family using the exponential progression in its derivation. The newly proposed kernel family was evaluated with simulated and life data. The outcomes clearly indicated that this kernel family could compete favorably well with other kernel families in density estimation. A further comparison of numerical results of the new family and the existing beta family revealed that the new family outperformed the classical beta kernel family with simulation and real data examples with the aid of asymptotic mean integrated squared error (AMISE) as criterion function. The information obtained from the data analysis of this research could be used for decision making in an organization, especially when human and material resources are to be considered. In addition, Kernel functions are vital tools for data analysis and data visualization; hence the newly proposed functions are vital exploratory tools.
Gabor-enhanced histogram of oriented gradients for human presence detection applied in aerial monitoring Anton Louise Pernez De Ocampo; Argel Bandala; Elmer Dadios
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.514

Abstract

In UAV-based human detection, the extraction and selection of the feature vector are one of the critical tasks to ensure the optimal performance of the detection system. Although UAV cameras capture high-resolution images, human figures' relative size renders persons at very low resolution and contrast. Feature descriptors that can adequately discriminate between local symmetrical patterns in a low-contrast image may improve a human figures' detection in vegetative environments. Such a descriptor is proposed and presented in this paper. Initially, the acquired images are fed to a digital processor in a ground station where the human detection algorithm is performed. Part of the human detection algorithm is the GeHOG feature extraction, where a bank of Gabor filters is used to generate textured images from the original. The local energy for each cell of the Gabor images is calculated to identify the dominant orientations. The bins of conventional HOG are enhanced based on the dominant orientation index and the accumulated local energy in Gabor images. To measure the performance of the proposed features, Gabor-enhanced HOG (GeHOG) and other two recent improvements to HOG, Histogram of Edge Oriented Gradients (HEOG) and Improved HOG (ImHOG), are used for human detection on INRIA dataset and a custom dataset of farmers working in fields captured via unmanned aerial vehicle. The proposed feature descriptor significantly improved human detection and performed better than recent improvements in conventional HOG. Using GeHOG improved the precision of human detection to 98.23% in the INRIA dataset. The proposed feature can significantly improve human detection applied in surveillance systems, especially in vegetative environments.
Magic cube puzzle approach for image encryption Achmad Fanany Onnilita Gaffar; Rheo Malani; Arief Bramanto Wicaksono Putra
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.422

Abstract

In principle, the image encryption algorithm produces an encrypted image. The encrypted image is composed of arbitrary patterns that do not provide any clues about the plain image and its cipher key. Ideally, the encrypted image is entirely independent of its plain image. Many functions can be used to achieve this goal. Based on the functions used, image encryption techniques are categorized into: (1) Block-based; (2) Chaotic-based; (3) Transformation-based; (4) Conventional-based; and (5) Miscellaneous based. This study proposes a magic cube puzzle approach to encrypt an 8-bit grayscale image. This approach transforms a plain image into a particular size magic cube puzzle, which is consists of a set of blocks. The magic cube puzzle algorithm will diffuse the pixels of the plain image as in a Rubik’s Cube game, by rotating each block in a particular direction called the transposition orientation. The block’s transposition orientation is used as the key seed, while the generation of the cipher key uses a random permutation of the key seed with a certain key length. Several performance metrics have been used to assess the goals, and the results have been compared to several standard encryption methods. This study showed that the proposed method was better than the other methods, except for entropy metrics. For further studies, modification of the method will be carried out in such a way as to be able to increase its entropy value to very close to 8 and its application to true color images. In essence, the magic cube puzzle approach has a large space for pixel diffusion that is possibly supposed to get bigger as a series of data has transformed into several magic cubes. Then, each magic cube has transposed with a different technique. This proposed approach is expected to add to a wealth of knowledge in the field of data encryption.
Lettuce growth stage identification based on phytomorphological variations using coupled color superpixels and multifold watershed transformation Ronnie Sabino Concepcion II; Jonnel Dorado Alejandrino; Sandy Cruz Lauguico; Rogelio Ruzcko Tobias; Edwin Sybingco; Elmer Pamisa Dadios; Argel Alejandro Bandala
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.435

Abstract

Identifying the plant's developmental growth stages from seed leaf is crucial to understand plant science and cultivation management deeply. An efficient vision-based system for plant growth monitoring entails optimum segmentation and classification algorithms. This study presents coupled color-based superpixels and multifold watershed transformation in segmenting lettuce plant from complicated background taken from smart farm aquaponic system, and machine learning models used to classify lettuce plant growth as vegetative, head development and for harvest based on phytomorphological profile. Morphological computations were employed by feature extraction of the number of leaves, biomass area and perimeter, convex area, convex hull area and perimeter, major and minor axis lengths of the major axis length the dominant leaf, and length of plant skeleton. Phytomorphological variations of biomass compactness, convexity, solidity, plant skeleton, and perimeter ratio were included as inputs of the classification network. The extracted Lab color space information from the training image set undergoes superpixels overlaying with 1,000 superpixel regions employing K-means clustering on each pixel class. Six-level watershed transformation with distance transformation and minima imposition was employed to segment the lettuce plant from other pixel objects. The accuracy of correctly classifying the vegetative, head development, and harvest growth stages are 88.89%, 86.67%, and 79.63%, respectively. The experiment shows that the test accuracy rates of machine learning models were recorded as 60% for LDA, 85% for ANN, and 88.33% for QSVM. Comparative analysis showed that QSVM bested the performance of optimized LDA and ANN in classifying lettuce growth stages. This research developed a seamless model in segmenting vegetation pixels, and predicting lettuce growth stage is essential for plant computational phenotyping and agricultural practice optimization.
Predicting breast cancer recurrence using principal component analysis as feature extraction: an unbiased comparative analysis Zuhaira Muhammad Zain; Mona Alshenaifi; Abeer Aljaloud; Tamadhur Albednah; Reham Alghanim; Alanoud Alqifari; Amal Alqahtani
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.462

Abstract

Breast cancer recurrence is among the most noteworthy fears faced by women. Nevertheless, with modern innovations in data mining technology, early recurrence prediction can help relieve these fears. Although medical information is typically complicated, and simplifying searches to the most relevant input is challenging, new sophisticated data mining techniques promise accurate predictions from high-dimensional data. In this study, the performances of three established data mining algorithms: Naïve Bayes (NB), k-nearest neighbor (KNN), and fast decision tree (REPTree), adopting the feature extraction algorithm, principal component analysis (PCA), for predicting breast cancer recurrence were contrasted. The comparison was conducted between models built in the absence and presence of PCA. The results showed that KNN produced better prediction without PCA (F-measure = 72.1%), whereas the other two techniques: NB and REPTree, improved when used with PCA (F-measure = 76.1% and 72.8%, respectively). This study can benefit the healthcare industry in assisting physicians in predicting breast cancer recurrence precisely.
An integrative review of computational methods for vocational curriculum, apprenticeship, labor market, and enrollment problems Ahmad Dardiri; Felix Andika Dwiyanto; Agung Bella Putra Utama
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.581

Abstract

Computational methods have been used extensively to solve problems in the education sector. This paper aims to explore the computational method's recent implementation in solving global Vocational education and training (VET) problems. The study used a systematic literature review to answer specific research questions by identifying, assessing, and interpreting all available research shreds of evidence. The result shows that researchers use the computational method to predict various cases in VET. The most popular methods are ANN and Naïve Bayes. It has significant potential to develop because VET has a very complex problem of (a) curriculum, (b) apprenticeship, (c) matching labor market, and (d) attracting enrollment. In the future, academics may have broad overviews of the use of the computational method in VET. A computer scientist may use this study to find more efficient and intelligent solutions for VET issues.
Feature selection to increase the random forest method performance on high dimensional data Maria Irmina Prasetiyowati; Nur Ulfa Maulidevi; Kridanto Surendro
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.471

Abstract

Random Forest is a supervised classification method based on bagging (Bootstrap aggregating) Breiman and random selection of features. The choice of features randomly assigned to the Random Forest makes it possible that the selected feature is not necessarily informative. So it is necessary to select features in the Random Forest. The purpose of choosing this feature is to select an optimal subset of features that contain valuable information in the hope of accelerating the performance of the Random Forest method. Mainly for the execution of high-dimensional datasets such as the Parkinson, CNAE-9, and Urban Land Cover dataset. The feature selection is done using the Correlation-Based Feature Selection method, using the BestFirst method. Tests were carried out 30 times using the K-Cross Fold Validation value of 10 and dividing the dataset into 70% training and 30% testing. The experiments using the Parkinson dataset obtained a time difference of 0.27 and 0.28 seconds faster than using the Random Forest method without feature selection. Likewise, the trials in the Urban Land Cover dataset had 0.04 and 0.03 seconds, while for the CNAE-9 dataset, the difference time was 2.23 and 2.81 faster than using the Random Forest method without feature selection. These experiments showed that the Random Forest processes are faster when using the first feature selection. Likewise, the accuracy value increased in the two previous experiments, while only the CNAE-9 dataset experiment gets a lower accuracy. This research’s benefits is by first performing feature selection steps using the Correlation-Base Feature Selection method can increase the speed of performance and accuracy of the Random Forest method on high-dimensional data.
Detection and localization enhancement for satellite images with small forgeries using modified GAN-based CNN structure Mohamed Mahmoud Fouad; Eslam Magdy Mostafa; Mohamed Abdelmoneim Elshafey
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.548

Abstract

The image forgery process can be simply defined as inserting some objects of different sizes to vanish some structures or scenes. Satellite images can be forged in many ways, such as copy-paste, copy-move, and splicing processes. Recent approaches present a generative adversarial network (GAN) as an effective method for identifying the presence of spliced forgeries and identifying their locations with a higher detection accuracy of large- and medium-sized forgeries. However, such recent approaches clearly show limited detection accuracy of small-sized forgeries. Accordingly, the localization step of such small-sized forgeries is negatively impacted. In this paper, two different approaches for detecting and localizing small-sized forgeries in satellite images are proposed. The first approach is inspired by a recently presented GAN-based approach and is modified to an enhanced version. The experimental results manifest that the detection accuracy of the first proposed approach noticeably increased to 86% compared to its inspiring one with 79% for the small-sized forgeries. Whereas, the second proposed approach uses a different design of a CNN-based discriminator to significantly enhance the detection accuracy to 94%, using the same dataset obtained from NASA and the US Geological Survey (USGS) for validation and testing. Furthermore, the results show a comparable detection accuracy in large- and medium-sized forgeries using the two proposed approaches compared to the competing ones. This study can be applied in the forensic field, with clear discrimination between the forged and pristine images.
Improved point center algorithm for K-Means clustering to increase software defect prediction Riski Annisa; Didi Rosiyadi; Dwiza Riana
International Journal of Advances in Intelligent Informatics Vol 6, No 3 (2020): November 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i3.484

Abstract

The k-means is a clustering algorithm that is often and easy to use. This algorithm is susceptible to randomly chosen centroid points so that it cannot produce optimal results. This research aimed to improve the k-means algorithm’s performance by applying a proposed algorithm called point center. The proposed algorithm overcame the random centroid value in k-means and then applied it to predict software defects modules’ errors. The point center algorithm was proposed to determine the initial centroid value for the k-means algorithm optimization. Then, the selection of X and Y variables determined the cluster center members. The ten datasets were used to perform the testing, of which nine datasets were used for predicting software defects. The proposed center point algorithm showed the lowest errors. It also improved the k-means algorithm’s performance by an average of 12.82% cluster errors in the software compared to the centroid value obtained randomly on the simple k-means algorithm. The findings are beneficial and contribute to developing a clustering model to handle data, such as to predict software defect modules more accurately.

Page 1 of 1 | Total Record : 9