cover
Contact Name
-
Contact Email
-
Phone
-
Journal Mail Official
-
Editorial Address
-
Location
Kota yogyakarta,
Daerah istimewa yogyakarta
INDONESIA
International Journal of Advances in Intelligent Informatics
ISSN : 24426571     EISSN : 25483161     DOI : 10.26555
Core Subject : Science,
International journal of advances in intelligent informatics (IJAIN) e-ISSN: 2442-6571 is a peer reviewed open-access journal published three times a year in English-language, provides scientists and engineers throughout the world for the exchange and dissemination of theoretical and practice-oriented papers dealing with advances in intelligent informatics. All the papers are refereed by two international reviewers, accepted papers will be available on line (free access), and no publication fee for authors.
Arjuna Subject : -
Articles 9 Documents
Search results for , issue "Vol 7, No 1 (2021): March 2021" : 9 Documents clear
Evolution strategies based coefficient of TSK fuzzy forecasting engine Nadia Roosmalita Sari; Wayan Firdaus Mahmudy; Aji Prasetya Wibawa
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.376

Abstract

Forecasting is a method of predicting past and current data, most often by pattern analysis. A Fuzzy Takagi Sugeno Kang (TSK) study can predict Indonesia's inflation rate, yet with too high error. This study proposes an accuracy improvement based on Evolution Strategies (ES), a specific evolutionary algorithm with good performance optimization problems. ES algorithm used to determine the best coefficient values on consequent fuzzy rules. This research uses Bank Indonesia time-series data as in the previous study. ES algorithm uses the popSize test to determine the number of initial chromosomes to produce the best optimal solution for this problem. The increase of popSize creates better fitness value due to the ES's broader search area. The RMSE of ES-TSK is 0.637, which outperforms the baseline approach. This research generally shows that ES may reduce repetitive experiment events due to Fuzzy coefficients' manual setting. The algorithm complexity may cost to the computing time, yet with higher performance.
Reversible difference expansion multi-layer data hiding technique for medical images Pascal Maniriho; Leki Jovial Mahoro; Zephanie Bizimana; Ephrem Niyigaba; Tohari Ahmad
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.483

Abstract

Maintaining the privacy and security of confidential information in data communication has always been a major concern. It is because the advancement of information technology is likely to be followed by an increase in cybercrime, such as illegal access to sensitive data. Several techniques were proposed to overcome that issue, for example, by hiding data in digital images. Reversible data hiding is an excellent approach for concealing private data due to its ability to be applied in various fields. However, it yields a limited payload and the quality of the image holding data (Stego image), and consequently, these two factors may not be addressed simultaneously. This paper addresses this problem by introducing a new non-complexity difference expansion (DE) and block-based reversible multi-layer data hiding technique constructed by exploring DE. Sensitive data are embedded into the difference values calculated between the original pixels in each block with relatively low complexity. To improve the payload capacity, confidential data are embedded in multiple layers of grayscale medical images while preserving their quality. The experiment results prove that the proposed technique has increased the payload with an average of 369999 bits and kept the peak signal to noise ratio (PSNR) to the average of 36.506 dB using medical images' adequate security the embedded private data. This proposed method has improved the performance, especially the secret size, without reducing much the quality. Therefore, it is suitable to use for relatively big payloads.
Constructing decision rules from naive bayes model for robust and low complexity classification Nabeel Hashim Al-Aaraji; Safaa Obayes Al-Mamory; Ali Hashim Al-Shakarchi
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.578

Abstract

A large spectrum of classifiers has been described in the literature. One attractive classification technique is a Naïve Bayes (NB) which has been relayed on probability theory. NB has two major limitations: First, it requires to rescan the dataset and applying a set of equations each time to classify instances, which is an expensive step if a dataset is relatively large. Second, NB may remain challenging for non-statisticians to understand the deep work of a model. On the other hand, Rule-Based classifiers (RBCs) have used IF-THEN rules (henceforth, rule-set), which are more comprehensible and less complex for classification tasks. For elevating NB limitations, this paper presents a method for constructing a rule-set from the NB model, which serves as RBC. Experiments of the constructing rule-set have been conducted on (Iris, WBC, Vote) datasets. Coverage, Accuracy, M-Estimate, and Laplace are crucial evaluation metrics that have been projected to rule-set. In some datasets, the rule-set obtains significant accuracy results that reach 95.33 %, 95.17% for Iris and vote datasets, respectively. The constructed rule-set can mimic the classification capability of NB, provide a visual representation of the model, express rules infidelity with acceptable accuracy; an easier method to interpreting and adjusting from the original model. Hence, the rule-set will provide a comprehensible and lightweight model than NB itself.
Cross-domain sentiment analysis model on Indonesian YouTube comment Agus Sasmito Aribowo; Halizah Basiron; Noor Fazilla Abd Yusof; Siti Khomsah
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.554

Abstract

A cross-domain sentiment analysis (CDSA) study in the Indonesian language and tree-based ensemble machine learning is quite interesting. CDSA is useful to support the labeling process of cross-domain sentiment and reduce any dependence on the experts; however, the mechanism in the opinion unstructured by stop word, language expressions, and Indonesian slang words is unidentified yet. This study aimed to obtain the best model of CDSA for the opinion in Indonesia language that commonly is full of stop words and slang words in the Indonesian dialect. This study was purposely to observe the benefits of the stop words cleaning and slang words conversion in CDSA in the Indonesian language form. It was also to find out which machine learning method is suitable for this model. This study started by crawling five datasets of the comments on YouTube from 5 different domains. The dataset was copied into two groups: the dataset group without any process of stop word cleaning and slang word conversion and the dataset group to stop word cleaning and slang word conversion. CDSA model was built for each dataset group and then tested using two types of tree-based ensemble machine learning, i.e., Random Forest (RF) and Extra Tree (ET) classifier, and tested using three types of non-ensemble machine learning, including Naïve Bayes (NB), SVM, and Decision Tree (DT) as the comparison. Then, It can be suggested that the accuracy of CDSA in Indonesia Language increased if it still removed the stop words and converted the slang words. The best classifier model was built using tree-based ensemble machine learning, particularly ET, as in this study, the ET model could achieve the highest accuracy by 91.19%. This model is expected to be the CDSA technique alternative in the Indonesian language.
Similarity measure fuzzy soft set for phishing detection Rahmat Hidayat; Iwan Tri Riyadi Yanto; Azizul Azhar Ramli; Mohd Farhan Md. Fudzee
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.605

Abstract

Phishing is a serious web security problem, and the internet fraud technique involves mirroring genuine websites to trick online users into stealing their sensitive information and taking out their personal information, such as bank account information, usernames, credit card, and passwords. Early detection can prevent phishing behavior makes quick protection of personal information. Classification methods can be used to predict this phishing behavior. This paper presents an intelligent classification model for detecting Phishing by redefining a fuzzy soft set (FSS) theory for better computational performance. There are four types of similarity measures: (1) Comparison table, (2) Matching function, (3) Similarity measure, and (4) Distance measure. The experiment showed that the Similarity measure has better performance than the others in accuracy and recall, reached 95.45 % and 99.77 %, respectively. It concludes that FSS similarity measured is more precise than others, and FSS could be a promising approach to avoid phishing activities. This novel method can be implemented in social media software to warn the users as an early warning system. This model can be used for personal or commercial purposes on social media applications to protect sensitive data.
Evaluation of texture feature based on basic local binary pattern for wood defect classification Ibrahim, Eihab Abdelkariem Bashir; Hashim, Ummi Raba'ah; Salahuddin, Lizawati; Ismail, Nor Haslinda; Choon, Ngo Hea; Kanchymalay, Kasturi; Zabri, Siti Normi
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.393

Abstract

Wood defects detection has been studied a lot recently to detect the defects on the wood surface and assist the manufacturers in having a clear wood to be used to produce a high-quality product. Therefore, the defects on the wood affect and reduce the quality of wood. This research proposes an effective feature extraction technique called the local binary pattern (LBP) with a common classifier called Support Vector Machine (SVM). Our goal is to classify the natural defects on the wood surface. First, preprocessing was applied to convert the RGB images into grayscale images. Then, the research applied the LBP feature extraction technique with eight neighbors (P=8) and several radius (R) values. After that, we apply the SVM classifier for the classification and measure the proposed technique's performance. The experimental result shows that the average accuracy achieved is 65% on the balanced dataset with P=8 and R=1. It indicates that the proposed technique works moderately well to classify wood defects. This study will consequently contribute to the overall wood defect detection framework, which generally benefits the automated inspection of the wood defects.
Coloring picture fuzzy graphs through their cuts and its computation Isnaini Rosyida; Suryono Suryono
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.612

Abstract

In a fuzzy set (FS), there is a concept of alpha-cuts of the FS for alpha in [0,1]. Further, this concept was extended into (alpha,delta)-cuts in an intuitionistic fuzzy set (IFS) for delta in [0,1]. One of the expansions of FS and IFS is the picture fuzzy set (PFS). Hence, the concept of (alpha,delta)-cuts was developed into (alpha,delta,beta)-cuts in a PFS where beta is an element of [0,1]. Since a picture fuzzy graph (PFG) consists of picture fuzzy vertex or edge sets or both of them, we have an idea to construct the notion of the (alpha,delta,beta)-cuts in a PFG. The steps used in this paper are developing theories and algorithms. The objectives in this research are to construct the concept of (alpha,delta,beta)-cuts in picture fuzzy graphs (PFGs), to construct the (alpha,delta,beta)-cuts coloring of PFGs, and to design an algorithm for finding the cut chromatic numbers of PFGs. The first result is a definition of the (alpha,delta,beta)-cut in picture fuzzy graphs (PFGs) where (alpha,delta,beta) are elements of a level set of the PFGs. Further, some properties of the cuts are proved. The second result is a concept of PFG coloring and the chromatic number of PFG based on the cuts. The third result is an algorithm to find the cuts and the chromatic numbers of PFGs. Finally, an evaluation of the algorithm is done through Matlab programming. This research could be used to solve some problems related to theories and applications of PFGs.
CAE-COVIDX: automatic covid-19 disease detection based on x-ray images using enhanced deep convolutional and autoencoder Hanafi Hanafi; Andri Pranolo; Yingchi Mao
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.577

Abstract

Since the first case in 2019, Corona Virus has been spreading all over the world. World Health Organization (WHO) announced that COVID-19 had become an international pandemic. There is an essential section to handle the spreading of the virus by immediate virus detection for patients. Traditional medical detection requires a long time, a specific laboratory, and a high cost. A method for detecting Covid-19 faster compared to common approaches, such as RT-PCR detection, is needed. The method demonstrated that it could produce an X-ray image with higher accuracy and consumed less time. We propose a novel method to extract image features and to classify COVID-19 using deep CNN combined with Autoencoder (AE) dubbed CAE-COVIDX. We evaluated and compared it with the traditional CNN and existing framework VGG16 involving 400 normal images of non-COVID19 and 400 positive COVID-19 diseases. The performance evaluation was conducted using accuracy, confusion matrix, and loss evaluation. Based on experiment results, the CAE-COVIDX framework outperforms previous methods in several testing scenarios. This framework's ability to detect Covid-19 in various nonstandard image X-rays could effectively help medical employers diagnose Covid-19 patients. It is an important factor to decrease the spreading of Covid-19 massively.
Intelligent feature selection using particle swarm optimization algorithm with a decision tree for DDoS attack detection Aween Abubakr Saeed; Noor Ghazi Mohammed Jameel
International Journal of Advances in Intelligent Informatics Vol 7, No 1 (2021): March 2021
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v7i1.553

Abstract

The explosive development of information technology is increasingly rising cyber-attacks. Distributed denial of service (DDoS) attack is a malicious threat to the modern cyber-security world, which causes performance disruption to the network servers. It is a pernicious type of attack that can forward a large amount of traffic to damage one or all target’s resources simultaneously and prevents authenticated users from accessing network services. The paper aims to select the least number of relevant DDoS attack detection features by designing an intelligent wrapper feature selection model that utilizes a binary-particle swarm optimization algorithm with a decision tree classifier. In this paper, the Binary-particle swarm optimization algorithm is used to resolve discrete optimization problems such as feature selection and decision tree classifier as a performance evaluator to evaluate the wrapper model’s accuracy using the selected features from the network traffic flows. The model’s intelligence is indicated by selecting 19 convenient features out of 76 features of the dataset. The experiments were accomplished on a large DDoS dataset. The optimal selected features were evaluated with different machine learning algorithms by performance measurement metrics regarding the accuracy, Recall, Precision, and F1-score to detect DDoS attacks. The proposed model showed a high accuracy rate by decision tree classifier 99.52%, random forest 96.94%, and multi-layer perceptron 90.06 %. Also, the paper compares the outcome of the proposed model with previous feature selection models in terms of performance measurement metrics. This outcome will be useful for improving DDoS attack detection systems based on machine learning algorithms. It is also probably applied to other research topics such as DDoS attack detection in the cloud environment and DDoS attack mitigation systems.

Page 1 of 1 | Total Record : 9