Claim Missing Document
Check
Articles

Found 31 Documents
Search

Overview on Strategies and Approaches for FPGA Programming Tole Sutikno; Nik Rumzi Nik Idris; Aiman Zakwan Jidin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 12, No 2: June 2014
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v12i2.58

Abstract

This paper presents an overview of strategies and approaches for FPGA programming. At first, design entry methods are briefly introduced. Then, the concepts of FPGA programming in some perspective viewpoints, such as: execution perspective, modelling perspective, programming style perspective, construction methodology perspective and synthesis perspective will be explained. Finally, the principle of VHDL programming use synchronization-evolution-action approach is introduced.
High Performance Direct Torque Control of Induction Motor Drives: Problems and Improvements Nik Rumzi Nik Idris; Tole Sutikno
Proceeding of the Electrical Engineering Computer Science and Informatics Vol 4: EECSI 2017
Publisher : IAES Indonesia Section

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (1306.853 KB) | DOI: 10.11591/eecsi.v4.970

Abstract

This paper presents some of the main problems, as well as their root causes, of Direct Torque Control (DTC) 3-phase induction motor drive. The high torque ripple in DTC drive due to the hysteresis controller inevitably becomes worst with the discrete implementation of the drive system. The hysteresis controller also causes variable switching frequency that depends on operating conditions, especially the speed. The simplification used in stator flux expression for voltage vectors selection in flux control results in a poor flux regulation at low speed. To overcome these problems, techniques that have been implemented at UTM- PROTON Future Drive Laboratory (UPFDL) are presented and described. Some experimental results obtained from the previous works are also presented and discussed. 
Improved Output Voltage Quality using Space Vector Modulation for Multilevel Inverters Auzani Jidin; Syamim Sanusi; Tole Sutikno; Nik Rumzi Nik Idris
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 2: June 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i2.3111

Abstract

Space vector modulation (SVM) has received wide acceptance due to many benefits over other techniques such as higher output voltages, lower total harmonic distortion (THD), high-efficiency and flexible to be implemented in vector control systems. In digital implementation, the SVM equations can be optimally computed by eliminate the use of complex forms. In this paper, the simple SVM based on two-level inverter is employed for higher levels of inverters. This is to retain the simplicity of SVM computation for three-level and five-level cascaded H-bridge multilevel inverter (CHMI). Moreover, the proposed method utilizes two controller boards to perform high computational workloads and to eliminate glitch and error problems. Experiment results show that the THD of output voltage in five-level CHMI gives the smallest value among the results obtained from other levels.
Direct Torque Control: Stator Flux Regulation Improvement at Low Speed Nik Rumzi Nik Idris
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 15, No 1: March 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v15i1.5419

Abstract

A simple method to improve stator flux regulation of a direct torque control (DTC) of induction motor drive is presented. By using this method, the simple control structure of DTC is retained and no modification to the voltage vectors look-up table is required. To implement this technique, the index to the look-up table is modified so that the reverse voltage vectors are selected (instead of zero-voltage vectors) whenever the stator flux regulation fails. To study the viability and the effectiveness of this simple method in improving the flux regulation at low speed, experiments are conducted to a ¼ hp induction motor with DTC technique. The control algorithm is implemented using a DS1104 controller board with Xilinx FPGA. 
Non-parametric induction motor rotor flux estimator based on feed-forward neural network Siti Nursyuhada Mahsahirun; Nik Rumzi Nik Idris; Zulkifli Md. Yusof; Tole Sutikno
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 13, No 2: June 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v13.i2.pp1229-1237

Abstract

The conventional induction motor rotor flux observer based on current model and voltage model are sensitive to parameter uncertainties. In this paper, a non-parametric induction motor rotor flux estimator based on feed-forward neural network is proposed. This estimator is operating without motor parameters and therefore it is independent from parameter uncertainties. The model is trained using Levenberg-Marquardt algorithm offline. All the data collection, training and testing process are fully performed in MATLAB/Simulink environment. A forced iteration of 1,000-epochs is imposed in the training process. There are overall 603,968 datasets are used in this modeling process. This four-input two-output neural network model is capable of providing rotor flux estimation for field-oriented control systems with 3.41e-9 mse and elapsed 28 minutes 49 seconds training time consumption. This proposed model is tested with reference speed step response and parameters uncertainties. The result indicates that the proposed estimator improves voltage model and current model rotor flux observers for parameters uncertainties.
High-Speed Computation using FPGA for Excellent Performance of Direct Torque Control of Induction Machines Tole Sutikno; Nik Rumzi Nik Idris; Auzani Jidin
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 14, No 1: March 2016
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v14i1.3110

Abstract

The major problems in hysteresis-based DTC are high torque ripple and variable switching frequency. In order to minimize the torque ripple, high sampling time and fast digital realization should be applied. The high sampling and fast digital realization time can be achieved by utilizing high-speed processor where the operation of the discrete hysteresis regulator is becoming similar to the operation of analog-based comparator. This can be achieved by utilizing field programmable gate array (FPGA) which can perform a sampling at a very high speed, compared to the fact that developing an ASIC chip is expensive and laborious.
A Novel Technique for Fault-Tolerant Control of Single-Phase Induction Motor Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 3: September 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i3.1480

Abstract

This research discusses about vector control of single-phase Induction Motor (IM) with two main and auxiliary windings under stator winding open-phase fault based on Indirect Rotor Flux-Oriented Control (IRFOC). Unlike conventional controller which can only be used for single-phase IM with two windings, the proposed technique in this paper can also be used for single-phase IM under open-phase fault. The proposed fault-tolerant drive system in this paper is based on using transformation matrix. Simulations results confirm the validity of the theoretical analysis.
Stator Field-Orientation Speed Control for 3-Phase Induction Motor under Open-Phase Fault Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 13, No 2: June 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v13i2.1441

Abstract

The industrial requirements for the control of an Induction Motor (IM) under fault conditions continue to be of attention, as evidenced by the majority current publications. The focus is on developments of control methods which can be used for faulty IM. A novel vector control technique based on Stator Field-Oriented Control (SFOC) for a 3-phase IM under open-phase fault is proposed in this paper. MATLAB simulation results are presented to illustrate the improvement in performance of the proposed algorithm.
High Performance Speed Control of Single-Phase Induction Motors Using Switching Forward and Backward EKF Strategy Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 7, No 1: March 2016
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijpeds.v7.i1.pp17-27

Abstract

The aim of this research is to provide a high performance vector control of single-phase Induction Motor (IM) drives. It is shown that in the rotating reference frame, the single-phase IM equations can be separated into forward and backward equations with the balanced structure. Based on this, a method for vector control of the single-phase IM, using two modified Rotor Field-Oriented Control (RFOC) algorithms is presented. In order to accommodate forward and backward rotor fluxes in the presented controller, an Extended Kalman Filter (EKF) with two different forward and backward currents that are switched interchangeably (switching forward and backward EKF), is proposed. Simulation results illustrate the effectiveness of the proposed algorithm.
A Novel Method for IRFOC of Three-Phase Induction Motor under Open-Phase Fault Mohammad Jannati; Tole Sutikno; Nik Rumzi Nik Idris; Mohd Junaidi Abdul Aziz
International Journal of Power Electronics and Drive Systems (IJPEDS) Vol 6, No 3: September 2015
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (2319.269 KB) | DOI: 10.11591/ijpeds.v6.i3.pp439-448

Abstract

This paper investigates the vector control of a star-connected three-phase Induction Motor (IM) under stator winding open-phase fault. The used vector control method is based upon indirect rotor field-orientation concepts that have been adapted for this type of machine. Beside the implementation of this method in critical industrial applications, the proposed method in this paper can be used for vector control of unbalanced 2-phase or single-phase IM with two main and auxiliary windings. Simulation results are provided to show the operation of the proposed drive system.