Cesar Hernandez
Universidad Distrital Francisco Jose de Caldas

Published : 12 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 4 Documents
Search
Journal : International Journal of Electrical and Computer Engineering

Bio-inspired route estimation in cognitive radio networks Miguel Tuberquia; Hans Lopez-Chavez; Cesar Hernandez
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 3: June 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (949.168 KB) | DOI: 10.11591/ijece.v10i3.pp3095-3107

Abstract

Cognitive radio is a technique that was originally created for the proper use of the radio electric spectrum due its underuse. A few methods were used to predict the network traffic to determine the occupancy of the spectrum and then use the ‘holes’ between the transmissions of primary users. The goal is to guarantee a complete transmission for the second user while not interrupting the trans-mission of primary users. This study seeks the multifractal generation of traffic for a specific radio electric spectrum as well as a bio-inspired route estimation for secondary users. It uses the MFHW algorithm to generate multifractal traces and two bio-inspired algo-rithms: Ant Colony Optimization and Max Feeding to calculate the secondary user’s path. Multifractal characteristics offer a predic-tion, which is 10% lower in comparison with the original traffic values and a complete transmission for secondary users. In fact, a hybrid strategy combining both bio-inspired algorithms promise a reduction in handoff. The purpose of this research consists on deriving future investigation in the generation of multifractal traffic and a mobility spectrum using bio-inspired algorithms.
Spectrum sharing in cognitive radio networks Julian Martinez; Cesar Hernandez; Luis Pedraza
International Journal of Electrical and Computer Engineering (IJECE) Vol 10, No 6: December 2020
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v10i6.pp6472-6483

Abstract

Cognitive radio networks are the next step to tackle scarcity in wireless networks given the increasing demand of radioelectric spectrum where the proposed solution is to share said resource to improve this situation. In the present article, a review of the current state of spectrum sharing in cognitive radio networks. To achieve this purpose, the articles published over the last 4 years on the matter were reviewed including topics such as mobile networks and TV. Some studies and simulations proposed to share the spectrum is shown. The current state of the studies reveals that there has been significant progress in this research area yet it is necessary to continue similar studies and set in motion different schemes.
Analysis and assessment software for multi-user collaborative cognitive radio networks Diego Giral; Cesar Hernandez; Fredy Martinez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i4.pp4507-4520

Abstract

Computer simulations are without a doubt a useful methodology that allows to explore research queries and develop prototypes at lower costs and timeframes than those required in hardware processes. The simulation tools used in cognitive radio networks (CRN) are undergoing an active process. Currently, there is no stable simulator that enables to characterize every element of the cognitive cycle and the available tools are a framework for discrete-event software. This work presents the spectral mobility simulator in CRN called “App MultiColl-DCRN”, developed with MATLAB’s app designer. In contrast with other frameworks, the simulator uses real spectral occupancy data and simultaneously analyzes features regarding spectral mobility, decision-making, multi-user access, collaborative scenarios and decentralized architectures. Performance metrics include bandwidth, throughput level, number of failed handoffs, number of total handoffs, number of handoffs with interference, number of anticipated handoffs and number of perfect handoffs. The assessment of the simulator involves three scenarios: the first and second scenarios present a collaborative structure using the multi-criteria optimization and compromise solution (VIKOR) decision-making model and the naïve Bayes prediction technique respectively. The third scenario presents a multi-user structure and uses simple additive weighting (SAW) as a decision-making technique. The present development represents a contribution in the cognitive radio network field since there is currently no software with the same features.
Acoustic event characterization for service robot using convolutional networks Fernando Martinez; Fredy Martinez; Cesar Hernandez
International Journal of Electrical and Computer Engineering (IJECE) Vol 12, No 6: December 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/ijece.v12i6.pp6684-6696

Abstract

This paper presents and discusses the creation of a sound event classification model using deep learning. In the design of service robots, it is necessary to include routines that improve the response of both the robot and the human being throughout the interaction. These types of tasks are critical when the robot is taking care of children, the elderly, or people in vulnerable situations. Certain dangerous situations are difficult to identify and assess by an autonomous system, and yet, the life of the users may depend on these robots. Acoustic signals correspond to events that can be detected at a great distance, are usually present in risky situations, and can be continuously sensed without incurring privacy risks. For the creation of the model, a customized database is structured with seven categories that allow to categorize a problem, and eventually allow the robot to provide the necessary help. These audio signals are processed to produce graphical representations consistent with human acoustic identification. These images are then used to train three convolutional models identified as high-performing in this type of problem. The three models are evaluated with specific metrics to identify the best-performing model. Finally, the results of this evaluation are discussed and analyzed.