Cesar Hernandez
Universidad Distrital Francisco Jose de Caldas

Published : 12 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 6 Documents
Search
Journal : Perfecting a Video Game with Game Metrics

Evaluation of deep neural network architectures in the identification of bone fissures Fredy Martinez; César Hernández; Fernando Martínez
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14754

Abstract

Automated medical image processing, particularly of radiological images, can reduce the number of diagnostic errors, increase patient care and reduce medical costs. This paper seeks to evaluate the performance of three recent convolutional neural networks in the autonomous identification of fissures over two-dimensional radiological images. These architectures have been proposed as deep neural network types specially designed for image classification, which allows their integration with traditional image processing strategies for automatic analysis of medical images. In particular, we use three convolutional networks: ResNet (residual neural network), DenseNet (dense convolutional network), and NASNet (neural architecture search network) to learn information from a set of 200 images labeled half as fissured bones and half as seamless bones. All three networks are trained and adjusted under the same conditions, and their performance was evaluated with the same metrics. The final results consider not only the model's ability to predict the characteristics of an unknown image but also its internal complexity. The three neural models were optimized to reduce classification errors without producing network over-adjustment. In all three cases, generalization of behavior was observed, and the ability of the models to identify the images with fissures, however the expected performance was only achieved with the NASNet model.
An overview of internet of things Sebastian Villamil; Cesar Hernandez; Giovanny Tarazona
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 5: October 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i5.15911

Abstract

The internet of things is an emerging technology that is currently present in most processes and devices, allowing to improve the quality of life of people and facilitating the access to specific information and services. The main purpose of the present article is to offer a general overview of internet of things, based on the analysis of recently published work. The added value of this article lies in the analysis of the main recent publications and the diversity of applications of internet of things technology. As a result of the analysis of the current literature, internet of things technology stands out as a facilitator in business and industrial performance but above all in improving the quality of life. As a conclusion to this document, the internet of things is a technology that can overcome the challenges in terms of security, processing capacity and data mobility, as long as the development related to other technologies follows its expected course.
Identifier of human emotions based on convolutional neural network for assistant robot Fredy Martinez; César Hernández; Angélica Rendón
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14777

Abstract

This paper proposes a solution for the problem of continuous prediction in real-time of the emotional state of a human user from the identification of characteristics in facial expressions. In robots whose main task is the care of people (children, sick or elderly people) is important to maintain a close relationship man-machine, anld a rapid response of the robot to the actions of the person under care. We propose to increase the level of intimacy of the robot, and its response to specific situations of the user, identifying in real time the emotion reflected by the person's face. This solution is integrated with algorithms of the research group related to the tracking of people for use on an assistant robot. The strategy used involves two stages of processing, the first involves the detection of faces using HOG and linear SVM, while the second identifies the emotion in the face using a CNN. The strategy was completely tested in the laboratory on our robotic platform, demonstrating high performance with low resource consumption. Through various controlled laboratory tests with different people, which forced a certain emotion on their faces, the scheme was able to identify the emotions with a success rate of 92%.
Failed handoffs in collaborative Wi-Fi networks Cesar Hernandez; Diego Giral; C. Salgado
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 2: April 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i2.14894

Abstract

Cognitive radio networks enable a more efficient use of the radioelectric spectrum through dynamic access. Decentralized cognitive radio networks have gained popularity due to their advantages over centralized networks. The purpose of this article is to propose the collaboration between secondary users for cognitive Wi-Fi networks, in the form of two multi-criteria decision-making algorithms known as TOPSIS and VIKOR and assess their performance in terms of the number of failed handoffs. The comparative analysis is established under four different scenarios, according to the service class and the traffic level, within the Wi-Fi frequency band. The results show the performance evaluation obtained through simulations and experimental measurements, where the VIKOR algorithm has a better performance in terms of failed handoffs under different scenarios and collaboration levels.
Cognitive radio for TVWS usage Diego Pineda; Cesar Hernandez
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 17, No 6: December 2019
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v17i6.13111

Abstract

Spectrum scarcity is an emerging issue in wireless communication systems due to the increasing demand of broadband services like mobile communications, wireless internet access, IoT applications, among others. The migration of analog TV to digital systems (a.k.a. digital TV switchover) has led to the release of a significant spectrum share that can be used to support said additional services. Likewise, TV white spaces emerge as spectral opportunities that can also be explored. Hence, cognitive radio (CR) presents itself as a feasible approach to efficiently use resources and exploit gaps within the spectrum. The goal of this paper is to unveil the state of the art revolving around the usage of TV white spaces, including some of the most important methods developed to exploit such spaces, upcoming opportunities, challenges for future research projects, and suggestions to improve current models.
Spectral opportunity selection based on the hybrid algorithm AHP-ELECTRE Carlos Perdomo; Cesar Hernandez; Diego Giral
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 6: December 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i6.16372

Abstract

Due to an ever-growing demand for spectrum and the fast-paced developmentof wireless applications, technologies such as cognitive radio enablethe efficient use of the spectrum. The objective of the present article is todesign an algorithm capable of choosing the best channel for data transmission.It uses quantitative methods that can modify behavior by changing qualityparameters in the channel. To achieve this task, a hybrid decision-makingalgorithm is designed that combinesanalytical hierarchy process(AHP)algorithms and adjusts the weights of each channel parameter, using a prioritytable. TheElimination Et Choix Tranduisant La Realité(ELECTRE)algorithm processes the information from each channel through a weightmatrix and then delivers the most favorable result for the transmitted data. Theresults reveal that the hybrid AHP-ELECTRE algorithm has a suitableperformance, which improves the throughput rate by 14% compared to similaralternatives.