Mohd Azhar Abdul Razak
Universiti Teknologi Malaysia

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Perfecting a Video Game with Game Metrics

Incident and reflected two waves correlation with cancellous bone structure Muhamad Amin Abd Wahab; Rubita Sudirman; Mohd Azhar Abdul Razak; Fauzan Khairi Che Harun; Nurul Ashikin Abdul Kadir; Nasrul Humaimi Mahmood
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 4: August 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i4.14828

Abstract

The correlation in bone microstructure for ultrasound pulse echo technique is still less accurate compared to through transmission technique. Previous works demonstrated, reflected two modes wave has significant association with bone porosity. The paper aims is to conduct simulation using pulse echo technique to examine the relationship between fast and slow waves with porosity of 2-dimensional cancellous bone models by comparing the result to through transmission technique. The “incident” and “reflected” waves were separated using bandlimited deconvolution method by estimating time threshold of fast and slow waves' transfer function. The parameters of the waves were computed, plotted versus porosity for six different thicknesses and the correlation coefficients between them were compared. The incident and reflected fast wave attenuations show marginally significant correlation with porosity for both bone models orientations. Wave propagation for parallel orientation dominated by incident and reflected fast wave, meanwhile, perpendicular orientation dominated by incident slow wave. The thickness factor affected wave amplitude but less affected the attenuation. Because of propagation loss, reflected wave shows lower correlation to porosity compared to incident wave. Hence, analyzing fast and slow waves might improve the measurement accuracy of pulse echo technique compared to using single mode wave to estimate bone quality.
Finite Element Simulation of Microfluidic Biochip for High Throughput Hydrodynamic Single Cell Trapping Amelia Ahmad Khalili; Mohd Ariffanan Mohd Basri; Mohd Azhar Abdul Razak
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 16, No 2: April 2018
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v16i2.9023

Abstract

In this paper, a microfluidic device capable of trapping a single cell in a high throughput manner and at high trapping efficiency is designed simply through a concept of hydrodynamic manipulation. The microfluidic device is designed with a series of trap and bypass microchannel structures for trapping individual cells without the need for microwell, robotic equipment, external electric force or surface modification. In order to investigate the single cell trapping efficiency, a finite element model of the proposed design has been developed using ABAQUS-FEA software. Based on the simulation, the geometrical parameters and fluid velocity which affect the single cell trapping are extensively optimized. After optimization of the trap and bypass microchannel structures via simulations, a single cell can be trapped at a desired location efficiently.