Julio Christian Young
Universitas Multimedia Nusantara

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Perfecting a Video Game with Game Metrics

Classification of pneumonia from X-ray images using siamese convolutional network Kennard Alcander Prayogo; Alethea Suryadibrata; Julio Christian Young
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14751

Abstract

Pneumonia is one of the highest global causes of deaths especially for children under 5 years old. This happened mainly because of the difficulties in identifying the cause of pneumonia. As a result, the treatment given may not be suitable for each pneumonia case. Recent studies have used deep learning approaches to obtain better classification within the cause of pneumonia. In this research, we used siamese convolutional network (SCN) to classify chest x-ray pneumonia image into 3 classes, namely normal conditions, bacterial pneumonia, and viral pneumonia. Siamese convolutional network is a neural network architecture that learns similarity knowledge between pairs of image inputs based on the differences between its features. One of the important benefits of classifying data with SCN is the availability of comparable images that can be used as a reference when determining class. Using SCN, our best model achieved 80.03% accuracy, 79.59% f1 score, and an improved result reasoning by providing the comparable images.
Contour evolution method for precise boundary delineation of medical images Friska Natalia; Hira Meidia; Nunik Afriliana; Julio Christian Young; Sud Sudirman
TELKOMNIKA (Telecommunication Computing Electronics and Control) Vol 18, No 3: June 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.12928/telkomnika.v18i3.14746

Abstract

Image segmentation is an important precursor to boundary delineation of medical images. One of the major challenges in applying automatic image segmentation in medical images is the imperfection in the imaging process which can result in inconsistent contrast and brightness levels, and low image sharpness and vanishing boundaries. Although recent advances in deep learning produce vast improvements in the quality of image segmentation, the accuracy of segmentation around object boundaries still requires improvement. We developed a new approach to contour evolution that is more intuitive but shares some common principles with the active contour model method. The method uses two concepts, namely the boundary grid and sparse boundary representation, as an implicit and explicit representation of the boundary points. We tested our method using lumbar spine MRI images of 515 patients. The experiment results show that our method performs up to 10.2 times faster and more flexible than the geodesic active contours method. Using BF-score contour-based metric, we show that our method improves the boundary accuracy from 74% to 84% as opposed to 63% by the latter method.