Minh-Sang Van Nguyen
Industrial University of Ho Chi Minh City (IUH)

Published : 4 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Bulletin of Electrical Engineering and Informatics

Exact secure outage probability performance of uplinkdownlink multiple access network under imperfect CSI Dinh-Thuan Do; Minh-Sang Van Nguyen
Bulletin of Electrical Engineering and Informatics Vol 10, No 6: December 2021
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v10i6.2981

Abstract

In this paper, we study uplink-downlink non-orthogonal multiple access (NOMA) systems by considering the secure performance at the physical layer. In the considered system model, the base station acts a relay to allow two users at the left side communicate with two users at the right side. By considering imperfect channel state information (CSI), the secure performance need be studied since an eavesdropper wants to overhear signals processed at the downlink. To provide secure performance metric, we derive exact expressions of secrecy outage probability (SOP) and and evaluating the impacts of main parameters on SOP metric. The important finding is that we can achieve the higher secrecy performance at high signal to noise ratio (SNR). Moreover, the numerical results demonstrate that the SOP tends to a constant at high SNR. Finally, our results show that the power allocation factors, target rates are main factors affecting to the secrecy performance of considered uplink-downlink NOMA systems.
Empowering secure transmission for downlink of multiple access system relying non-orthogonal signal multiplexing Dinh-Thuan Do; Minh-Sang Van Nguyen
Bulletin of Electrical Engineering and Informatics Vol 11, No 4: August 2022
Publisher : Institute of Advanced Engineering and Science

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.11591/eei.v11i4.3774

Abstract

The growth of internet-of-things (IoT) inspired use cases in different run of the mill environments such as cities, industries, healthcare, agriculture, and transportation, has led to a greater desire for safer IoT data gathering and storage. However, securing IoT is challenging due to form-factor, complexity, energy, and connectivity limitations. Conventional coding-based security techniques are unsuitable for ultra-reliable low-latency and energy-efficient communication in IoT. Numerous research studies on physical layer security (PLS) techniques for fifth generation (5G) have emerged recently, but not all of the solutions can be used in IoT networks due to complexity limitations. Non-orthogonal multiple access (NOMA) is billed as a possible technology to solve connectivity and latency requirements in IoT. In this study, we exploit the power allocation characteristics of NOMA to enhance security in a downlink deviceto-device (D2D) decode and forward (DF) IoT network infiltrated by an eavesdropper. Our performance metric of choice is the secrecy outage probability (SOP). We formulate exact SOP results for different users. Simulation results demonstrate the positive impact of NOMA on SOP in a D2D IoT-NOMA network.