Claim Missing Document
Check
Articles

Found 3 Documents
Search
Journal : International Journal of Advances in Intelligent Informatics

Vehicle pose estimation for vehicle detection and tracking based on road direction Adhi Prahara; Ahmad Azhari; Murinto Murinto
International Journal of Advances in Intelligent Informatics Vol 3, No 1 (2017): March 2017
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v3i1.88

Abstract

Vehicle has several types and each of them has different color, size, and shape. The appearance of vehicle also changes if viewed from different viewpoint of traffic surveillance camera. This situation can create many possibilities of vehicle poses. However, the one in common, vehicle pose usually follows road direction. Therefore, this research proposes a method to estimate the pose of vehicle for vehicle detection and tracking based on road direction. Vehicle training data are generated from 3D vehicle models in four-pair orientation categories. Histogram of Oriented Gradients (HOG) and Linear-Support Vector Machine (Linear-SVM) are used to build vehicle detectors from the data. Road area is extracted from traffic surveillance image to localize the detection area. The pose of vehicle which estimated based on road direction will be used to select a suitable vehicle detector for vehicle detection process. To obtain the final vehicle object, vehicle line checking method is applied to the vehicle detection result. Finally, vehicle tracking is performed to give label on each vehicle. The test conducted on various viewpoints of traffic surveillance camera shows that the method effectively detects and tracks vehicle by estimating the pose of vehicle. Performance evaluation of the proposed method shows 0.9170 of accuracy and 0.9161 of balance accuracy (BAC).
Bottom-up visual attention model for still image: a preliminary study Adhi Prahara; Murinto Murinto; Dewi Pramudi Ismi
International Journal of Advances in Intelligent Informatics Vol 6, No 1 (2020): March 2020
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v6i1.469

Abstract

The philosophy of human visual attention is scientifically explained in the field of cognitive psychology and neuroscience then computationally modeled in the field of computer science and engineering. Visual attention models have been applied in computer vision systems such as object detection, object recognition, image segmentation, image and video compression, action recognition, visual tracking, and so on. This work studies bottom-up visual attention, namely human fixation prediction and salient object detection models. The preliminary study briefly covers from the biological perspective of visual attention, including visual pathway, the theory of visual attention, to the computational model of bottom-up visual attention that generates saliency map. The study compares some models at each stage and observes whether the stage is inspired by biological architecture, concept, or behavior of human visual attention. From the study, the use of low-level features, center-surround mechanism, sparse representation, and higher-level guidance with intrinsic cues dominate the bottom-up visual attention approaches. The study also highlights the correlation between bottom-up visual attention and curiosity.
GPU Accelerated Number Plate Localization in Crowded Situation Adhi Prahara; Andri Pranolo; Rafał Dreżewski
International Journal of Advances in Intelligent Informatics Vol 1, No 3 (2015): November 2015
Publisher : Universitas Ahmad Dahlan

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.26555/ijain.v1i3.46

Abstract

Number Plate Localization (NPL) has been widely used as part of Automatic Number Plate Recognition (ANPR) system. NPL method determines the accuracy of ANPR system. Although it is a mature research, the challenge stills persist especially in crowded situation where many vehicles present. Therefore, a method is proposed to localize number plate in crowded situation. The proposed NPL method uses vertical edge density to extract potential region of number plate then detect the number plate using combination of Histogram of Oriented Gradients (HOG) and Support Vector Machine (SVM). The method employs GPU to deal with multiple number plate detection, to handle multi-scale detection window, and to perform real time detection. The test result shows good results, 0.9883 value of AUC (Area Under Curve), and 0.9362 of BAC (Balance Accuracy). Moreover, potential real time detection is foreseen because total process is executed in less than 50 ms. Errors are mainly caused by background that contain letters, non-standard number plate and highly covered number plate