Claim Missing Document
Check
Articles

Found 14 Documents
Search

Determination of the Optimum Wavelet Basis Function for Indonesian Vowel Voice Recognition P. N., Habib Ratu; Hidayat, Syahroni; Kumoro, Danang Tejo
Jurnal Elektronika dan Telekomunikasi Vol 17, No 2 (2017)
Publisher : Indonesian Institute of Sciences

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jet.v17.42-47

Abstract

Nowadays, wavelet has been widely applied in extracting features of the signal for automatic speech recognition system. Wavelets have many families that are determined by their mother function and order. The use of different wavelets to analyze the same signal would bring different results. In many cases, a trial and error procedure is used to select the optimal wavelet family. That is because there are no particular wavelet basis functions that can be applied to the entire speech signals. Therefore, it is necessary to analyze the similarity between the speech signal and the wavelet base function. One of the methods that can be used is cross-correlation. In this study, the degree of correlation is determined between wavelet base function and Indonesian vowels. The influence of gender and consistencies of the results are also used in the analysis. The results show that db45 and db44 are most similar to male and female vowels utterance, respectively. For consistencies, only vowel e gives a consistent result. Overall, db44 is most similar to all Indonesian vowels utterance.
Metode Wavelet-MFCC dan Korelasi dalam Pengenalan Suara Digit Zaurarista Dyarbirru; Syahroni Hidayat
JTIM : Jurnal Teknologi Informasi dan Multimedia Vol 2 No 2 (2020): August
Publisher : Puslitbang Sekawan Institute Nusa Tenggara

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.35746/jtim.v2i2.99

Abstract

Voice is the sound emitted from living things. With the development of Automatic Speech Recognition (ASR) technology, voice can be used to make it easier for humans to do something. In the ASR extraction process the features have an important role in the recognition process. The feature extraction methods that are commonly applied to ASR are MFCC and Wavelet. Each of them has advantages and disadvantages. Therefore, this study will combine the wavelet feature extraction method and MFCC to maximize the existing advantages. The proposed method is called Wavelet-MFCC. Voice recognition method that does not use recommendations. Determination of system performance using the Word Recoginition Rate (WRR) method which is validated with the K-Fold Cross Validation with the number of folds is 5. The research dataset used is voice recording digits 0-9 in English. The results show that the digit speech recognition system that has been built gives the highest average value of 63% for digit 4 using wavelet daubechies DB3 and wavelet dyadic transform method. As for the comparison results of the wavelet decomposition method used, that the use of dyadic wavelet transformation is better than the wavelet package.
Model Matematis Prediksi Laju Pengeringan Manisan Pepaya pada Alat Pengering Tipe Rak Murad Murad; Sukmawaty Sukmawaty; Joko Sumarsono; Syahroni Hidayat
Teknotan: Jurnal Industri Teknologi Pertanian Vol 15, No 1 (2021): TEKNOTAN, Agustus 2021
Publisher : Fakultas Teknologi Industri Pertanian

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.24198/jt.vol15n1.6

Abstract

Pengeringan secara konvensional masih banyak kekurangan, salah satunya sangat tergantung dengan cuaca. Sehingga perlu dilakukan suatu penanganan alternatif yaitu dengan menggunakan alat pengering mekanis menggunakan tambahan panas dan memerlukan energi untuk memanaskan bahan dan menguapkam air yaitu dengan menggunkan alat pengering seperti alat pengering tipe rak. Penelitian ini fokus pada penentuan konstanta laju pengeringan manisan pepaya baik hasil eksperimen ataupun prediksi menggunakan pengering tipe rak yang diberikan blower. Variabel yang digunakan adalah kecepatan aliran udara blower 3.43 m/detik dan 4.55 m/detik. Diperoleh hasil bahwa konstanta laju pengeringan prediksi memiliki nilai determinansi mencapai lebih dari 90% dengan nilai RMSE sangat kecil, masing-masing 0.065 dan 0.125. Penggunaan kecepatan aliran udara tidak terlalu mempengaruhi nilai konstanta laju pengeringan.
Determination of the Optimum Wavelet Basis Function for Indonesian Vowel Voice Recognition Syahroni Hidayat; Habib Ratu P. N.; Danang Tejo Kumoro
Jurnal Elektronika dan Telekomunikasi Vol 17, No 2 (2017)
Publisher : LIPI Press

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.14203/jet.v17.42-47

Abstract

Nowadays, wavelet has been widely applied in extracting features of the signal for automatic speech recognition system. Wavelets have many families that are determined by their mother function and order. The use of different wavelets to analyze the same signal would bring different results. In many cases, a trial and error procedure is used to select the optimal wavelet family. That is because there are no particular wavelet basis functions that can be applied to the entire speech signals. Therefore, it is necessary to analyze the similarity between the speech signal and the wavelet base function. One of the methods that can be used is cross-correlation. In this study, the degree of correlation is determined between wavelet base function and Indonesian vowels. The influence of gender and consistencies of the results are also used in the analysis. The results show that db45 and db44 are most similar to male and female vowels utterance, respectively. For consistencies, only vowel e gives a consistent result. Overall, db44 is most similar to all Indonesian vowels utterance.
Transformasi Lontar Babad Lombok Menuju Digitalisasi Berbasis Natural Gradient Flexible (NGF) Muhammad Tajuddin Anwar; Syahroni Hidayat; Ahmat Adil
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8, No 2: April 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.2021824088

Abstract

Suku Sasak, yang tinggal di pulau Lombok Nusa Tenggara Barat, memiliki tradisi penulisan di daun lontar (Borassus Flabellifer) kering, salah satunya adalah naskah Lontar Babad Lombok. Naskah Lontar Babad Lombok seiring berlalunya waktu, menjadi rapuh dan mudah patah sehingga memerlukan perawatan. Keadaan ini mendorongnya perlu dilakukan digitalisasi naskah lontar babad lombok sebagai bentuk pelestarian sehingga para generasi Milenial, khususnya di Lombok, dapat menikmati lontar babad lombok. Digitalisasi citra tersebut tantangan utama adalah tepi kabur teks dan perbedaan minimum antara teks dan bagian non-tekssebagai akibat dari proses perawatan. Oleh karena itu, dibutuhkan proses peningkatan kualitas citra hasil digitalisasi agar tulisan dapat lebih jelas terbaca. Salah satu metode yang terbukti mampu untuk memisahkan teks dari latar belakang yang sangat berkorelasi adalah Natural Gradient Flexibel (NGF) berbasiskan Independent Component Analysis (ICA), NGF-ICA. Penelitian ini bertujuan untuk melakukan peningkatan kualitas citra digitalisasi sebelum diumpankan pada database dan sistem informasi yang telah dibangun. Kualitas citra yang telah ditingkatkan diukur menggunakan metode MSE dan PSNR untuk tingkat kemiripannya, dan metode Entropi dan SSIM untuk informasi dan perspektif visual. Hasil penelitian menunjukkan bahwa penerapan algoritma NGF-ICA dapat memberikan citra keluaran dengan kualitas yang tinggi dengan nilai rata-rata MSE, PSNR, SSIM dan peningkatan Entropi sebesar 708, 19.95 db, 0.87 dan 0.45, secara berturut-turut. AbstractSasak tribe, who lives on Lombok Island, West Nusa Tenggara, has been writing manuscripts on dry palm leaves (Borassus Flabellifer) as a tradition, one of the manuscripts is Lontar Babad Lombok. As time pass by, the manuscript becomes brittle and breaks easily, therefore maintenances are required. this situation force the need to digitalize the manuscript as an act of preservation, hence the millennial generation, especially on Lombok Island, can enjoy the manuscript. the main challenge is the blurry edge of the text and the slight difference between the text and non-text part caused by the treatment process. Hence, it is needed to enhance the quality of the digitalize image to make the manuscript can be more clearly read. One of the proven methods that able to separate text from highly correlated backgrounds is Natural Gradient Flexibel (NGF) based on Independent Component Analysis (ICA), NGF-ICA. The aim of this study is to improve the quality of the digitized images before they fed into the database and information system that has been built. The enhanced image quality was measured, MSE and PSNR methods were used to measure the similarity level, and the Entropy and SSIM method were used to measure the information and visual perspective. The results show that the application of the NGF-ICA algorithm can generate high-quality output images with average values of MSE, PSNR, SSIM, and increasing Entropy by 708, 19.95 dB, 0.87, and 0.45, respectively.
SPEECH RECOGNITION OF KV-PATTERNED INDONESIAN SYLLABLE USING MFCC, WAVELET AND HMM Syahroni Hidayat; Risanuri Hidayat; Teguh Bharata Adji
Jurnal Ilmiah Kursor Vol 8 No 2 (2015)
Publisher : Universitas Trunojoyo Madura

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.28961/kursor.v8i2.63

Abstract

The Indonesian language is an agglutinative language which has complex suffixes and affixes attached on its root. For this reason there is a high possibility to recognize Indonesian speech based on its syllables. The syllable-based Indonesian speech recognition could reduce the database and recognize new Indonesian vocabularies which evolve as the result of language development. MFCC and WPT daubechies 3rd (DB3) and 7th (DB7) order methods are used in feature extraction process and HMM with Euclidean distance probability is applied for classification. The results shows that the best recognition rateis 75% and 70.8% for MFCC and WPT method respectively, which come from the testing using training data test. Meanwhile, for testing using external data test WPT method excel the MFCC method, where the best recognition rate is 53.1% for WPT and 47% for MFCC. For MFCC the accuracy increased asthe data length and the frame length increased. In WPT, the increase in accuracy is influenced by the length of data, type of the wavelet and decomposition level. It is also found that as the variation of state increased the recognition for both methods decreased.
Penentuan Filterbank Wavelet Menggunakan Algoritma Mean Best Basis untuk Ekstraksi Ciri Sinyal Suara Ber-Noise Abdurahim Abdurahim; Syahroni Hidayat
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 7, No 1: Februari 2020
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Belakangan ini filterbank berbasis wavelet sebagai ekstraktor ciri mulai banyak dikembangkan untuk dapat menggantikan peran ciri Mel Frequency Cepstral Coefficient (MFCC) dalam sistem pengenalan suara otomatis. Salah satu filterbank ciri wavelet yang dikembangkan adalah Wavelet-Packet Cepstral Coefficient (WPCC). Namun sejauh ini pengembangannya hanya difokuskan untuk suara tanpa noise. Sehingga penelitian ini bertujuan untuk mendesain WPCC untuk suara yang mengandung noise. Algoritma Mean Best Basis (MBB) dan fungsi wavelet db44 dan db45 digunakan untuk memperoleh desain filterbank WPCC. Suara yang digunakan adalah rekaman suara vokal bahasa Indonesia a, i, u, e, é, o, dan ó yang mengandung noise. Hasil menunjukkan telah terbentuk dua buah desain filterbank WPCC. Masing-masing merupakan hasil penerapan fungsi daubechies db44 dan db45. Noise tidak memberikan pengaruh terhadap pembentukan kedua filterbank WPCC tersebut. Kedua bentuk filterbank telah memenuhi standar bentuk filter MFCC terutama untuk variabel range dan skala frekuensinya. Range frekuensinya berkisar antara 125 Hz - 1000 Hz dengan bentuk skala yang linier untuk frekuensi di bawah 1000 Hz. Sehingga dapat disimpulkan kedua bentuk filterbank WPCC ini dapat dipertimbangkan untuk digunakan sebagai ekstraktor ciri suara ber-noise. AbstractRecently wavelet-based filterbanks as feature start extractors have been widely developed to replace the role of the Mel Frequency Cepstral Coefficient (MFCC) feature in automatic speech recognition systems. One of the wavelet feature filterbanks developed is Wavelet-Packet Cepstral Coefficient (WPCC). But so far the development has only been focused on clean speech signal. So, the aim of this study is designing WPCC for a noisy speech signal. The Mean Best Basis (MBB) algorithm and db44 and db45 wavelet functions are applied to obtain the WPCC filterbank design. The noisy speech signal used is the recorded utterance Indonesian vowels a, i, u, e, é, o, and ó. The results show that two WPCC filterbank designs have been formed. Each of them is the result of applying the daubechies db44 and db45 functions. Noise has no effect on the establishment of both the WPCC filterbanks. Both fiterbank designs have met MFCC filter form standards, especially for its range of frequency and frequency scale. Its range of frequency is between 125 Hz - 1000 Hz with a linear scale for frequencies below 1000 Hz. Therefore it can be concluded that the two forms of WPCC filterbank can be considered to be used as a feature extractor for a noisy speech signal.
Segmentation of university customers loyalty based on RFM analysis using fuzzy c-means clustering Syahroni Hidayat; Ria Rismayati; Muhammad Tajuddin; Ni Luh Putu Merawati
Jurnal Teknologi dan Sistem Komputer Volume 8, Issue 2, Year 2020 (April 2020)
Publisher : Department of Computer Engineering, Engineering Faculty, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (81.531 KB) | DOI: 10.14710/jtsiskom.8.2.2020.133-139

Abstract

One of the strategic plans of the developing universities in obtaining new students is forming a partnership with surrounding high schools. However, partnerships made does not always behave as expected. This paper presented the segmentation technique to the previous new student admission dataset using the integration of recency, frequency, and monetary (RFM) analysis and fuzzy c-means (FCM) algorithm to evaluate the loyalty of the entire school that has bound the partnership with the institution. The dataset is converted using the RFM approach before processed with the FCM algorithm. The result reveals that the schools can be segmented, respectively, as high potential (SP), potential (P), low potential (CP), and very low potential (KP) categories with PCI value 0.86. From the analysis of SP, P, and CP, only 71 % of 52 school partners categorized as loyal partners.
Sistem Pengenalan Pembicara dengan Metode Wavelet-MCFF dan Pengklasifikasi Hidden Markov Models (HMM) Syahroni Hidayat; Andi Sofyan Anas; Siti Agrippina Alodia Yusuf; Muhammad Tajuddin
Jurnal Teknologi Informasi dan Ilmu Komputer Vol 8, No 1: Februari 2021
Publisher : Fakultas Ilmu Komputer, Universitas Brawijaya

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.25126/jtiik.0813284

Abstract

Penelitian pengolahan sinyal digital yang berfokus pada pengenalan pembicara telah dimulai sejak beberapa dekade yang lalu, dan telah menghasilkan banyak metode-metode pengenalan pembicara. Di antara algoritma pembentukan koefisien ciri yang telah dikembangkan tersebut, ada dua algoritma yang dapat memberikan akurasi yang tinggi jika diterapkan pada sistem, yaitu Mel Frequency Cepstral Coefficient (MFCC) dan Wavelet. Penelitian ini bertujuan untuk menguji dan memilih kanal terbaik dari proses wavelet-MFCC yang dapat dijadikan sebagai koefisien ciri baru untuk diterapkan pada sistem pengenal pembicara. Koefisien ciri baru tersebut kemudian disebut dengan koefisien ciri Wavelet-MFCC. Kofisien ini dibentuk dari merubah kanal hasil dekomposisi wavelet, yaitu kanal aproksimasi (cA), kanal detail (cD), dan penggabungannya (cAcD), menjadi koefisien MFCC. Metode dekomposisi wavelet yang digunakan adalah metode dyadic dengan menerapkan level dekomposisi level 1 dan level 2. Setiap koefisien ciri kemudian menjadi inputan pada sistem pengklasifikasi Hidden Markov Models (HMM). Keluaran dari HMM kemudian dihitung akurasinya dan dianalisis. Dari pengujian yang dilakukan, diperoleh bahwa kanal detail (cD) sebagai ciri dapat memberikan akurasi yang sama dengan menggunakan kanal gabungan (cAcD) dan lebih tinggi dari kanal aproksimasi (cA), dengan akurasi sebesar 95%. Hal ini menunjukkan bahwa, kanal detail pada dekomposisi level 1 menyimpan ciri suara dari setiap pembicara sehingga sudah cukup untuk dijadikan sebagai koefisien ciri. Maka, penggunaan dekomposisi level 1 dan kanal detail cD sebagai ciri Wavelet-MFCC pada sistem pengenalan pembicara dapat meringankan dan mempercepat proses komputasi. AbstractResearch in digital signal that focused on speaker recognition has begun since decades ago, and has resulted many speaker recognition methods. there are two algorithms that can provide high accuracy in recognition system, which are Mel Frequency Cepstral Coefficient (MFCC) and Wavelet. the aims of this study is to examine and chose the best channel from wavelet-MFCC process that can be used as new feature coefficient, then called as Wavelet-MFCC features coefficient. The coefficient is built by converting the wavelet decomposition channels, which are approximation (cA), detail (cD), and its combination (cAcD), into the MFCC coefficient. Wavelet dyadic decomposition with level 1 and level 2 of decomposition is applied. Each feature coefficient acts as an input to the HMM classifier. The accuracy of the HMM output is calculated, then analyzed. The obtained results show that the detail chanel (cD) achieve equal accuracy as the combination chanel (cAcD), and higher accuracy compared to aproximation channel (cA), with accuracy 95%. Thus, it can be conclude that the detail channel on level 1 decomposition contains features of each speaker's. Then, cD is enough to be used as a Wavelet-MFCC feature. Thus, its implementation in the SRS can ease and speed up the computing process.
EVALUASI SISTEM INFORMASI PENGGUNAAN E-LEARNING SEBAGAI SISTEM PERKULIAHAN PERGURUAN TINGGI Hasanah, Uswatun; Hidayat, Syahroni; Kumoro, Danang Tejo
JURNAL INFOTEL Vol 12 No 4 (2020): November 2020
Publisher : LPPM INSTITUT TEKNOLOGI TELKOM PURWOKERTO

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.20895/infotel.v12i4.475

Abstract

This study aims to evaluate the use of technology to support teaching and learning activities. Lecturers and students have applied e-learning to teach subjects. The purpose of this evaluation is to measure the success of the use of STMIK Bumigora e-learning by using the Technology Acceptance Model (TAM) approach, which is an approach that can explain user behavior towards the use of technology. Evaluation of the use of e-learning is formulated into a model based on the TAM model, while SEM (Structural Equation Modelling) is used for data analysis. Based on the measurement analysis in this study, several factors most influenced the effectiveness of e-learning, namely the usage tutorial for users, ICT facilities related to the Ease of accessing the internet network. Meanwhile, in structural analysis, it was found that attitudes toward the use and perceived usefulness were strongly correlated with real use factors. The actual use is a real condition of the use of e-learning measured by the frequency and duration of time in using the technology, which is influenced by the user's belief in accepting the existence of e-learning in STMIK Bumigora and user beliefs related to the benefits when using it. Therefore, attitudes toward the use and perception of usefulness are the main determining factors in measuring the frequency and duration of e-learning use.