Untari Novia Wisesty
School Of Computing, Telkom University

Published : 8 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 8 Documents
Search

Momentum Backpropagation Optimization for Cancer Detection Based on DNA Microarray Data Untari Novia Wisesty; Febryanti Sthevanie; Rita Rismala
International Journal of Artificial Intelligence Research Vol 4, No 2 (2020): December 2020
Publisher : STMIK Dharma Wacana

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (251.127 KB) | DOI: 10.29099/ijair.v4i2.188

Abstract

Early detection of cancer can increase the success of treatment in patients with cancer. In the latest research, cancer can be detected through DNA Microarrays. Someone who suffers from cancer will experience changes in the value of certain gene expression.  In previous studies, the Genetic Algorithm as a feature selection method and the Momentum Backpropagation algorithm as a classification method provide a fairly high classification performance, but the Momentum Backpropagation algorithm still has a low convergence rate because the learning rate used is still static. The low convergence rate makes the training process need more time to converge. Therefore, in this research an optimization of the Momentum Backpropagation algorithm is done by adding an adaptive learning rate scheme. The proposed scheme is proven to reduce the number of epochs needed in the training process from 390 epochs to 76 epochs compared to the Momentum Backpropagation algorithm. The proposed scheme can gain high accuracy of 90.51% for Colon Tumor data, and 100% for Leukemia, Lung Cancer, and Ovarian Cancer data.
Algoritma Pengenalan Ucapan Huruf Hijaiyah Bertanda Baca Menggunakan Mel Frequency Cepstral Coefficients dan Hidden Markov Model Adiwijaya .; Andrian Fakhri; Untari Novia Wisesty
Indonesia Symposium on Computing Indonesia Symposium on Computing (IndoSC) 2016
Publisher : Indonesia Symposium on Computing

Show Abstract | Download Original | Original Source | Check in Google Scholar

Abstract

Speech recognition merupakan sebuah metode yang dapat mengubah sinyal-sinyal suara ke dalam bentuk data digital agar dapat dipahami computer. Sistem pengenalan suara terdiri dua bagian utama yaitu proses ekstraksi ciri dan klasifikasi. Pada penelitian ini penulis menggunakan metode MelFrequency Ceptral Coefficient (MFCC) pada proses ekstraksi ciri bertujuan untuk mendapatkan informasi penting yang terkandung dalam sinyal suara, informasi tersebut akan merepresentasikan karakteristik khusus dari suatu huruf atau kata yang diucapkan. Untuk proses klasifikasi dan pembentukan model penulis menggunakan metode Hidden Markov Model (HMM), setiap data yang dimodelkan menggunakan metode ini akan menghasilkan model HMM, maka jumlah model akan sama dengan jumlah data yang di training. Sistem speech recognition juga dapat diterapkan pada sistem pengenalan ucapan huruf hijaiyah. Setelah penulis melakukan pengujian terhadap sistem dengan menggunakan 128 codebook dan 7 states untuk mengenali 168 huruf yang berbeda didapat tingkat akurasi tertinggi 41%. Dan saat pengujian untuk mengenali 28 huruf akurasi tertinggi yang mencapai 57%.
Eye State Prediction Based on EEG Signal Data Neural Network and Evolutionary Algorithm Optimization Untari Novia Wisesty; Hifzi Priabdi; Rita Rismala; Mahmud Dwi Sulistiyo
Indonesia Journal on Computing (Indo-JC) Vol. 5 No. 1 (2020): Maret, 2020
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.34818/INDOJC.2020.5.1.372

Abstract

Eye state prediction is one study using EEG signals obtained to predict the state of the human eye several moments before. In its development, many researchers also have built eye states detection schemes, but the system built is only limited to classifying one record of input data obtained from the Emotive EPOC headset channel into the eye state. Therefore, this paper proposed eye state prediction system where the system can predict the state of the human eye some time previously based on the EEG signal series used. The proposed system consists of two parts, namely the prediction of the EEG signal value and eye state detection based on the value of the signal that has been obtained using Differential Evolution and Neural Network optimized by Evolution Strategies, respectively. The highest accuracy obtained from the eye state prediction system that has been built is 73.2%. These results are obtained by the best combination of parameters from the three methods used.
Implementasi Gabor Wavelet dan Support Vector Machine pada Deteksi Polycystic Ovary (PCO) Berdasarkan Citra Ultrasonografi Untari Novia Wisesty
Indonesia Journal on Computing (Indo-JC) Vol. 1 No. 2 (2016): September, 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2016.1.2.90

Abstract

Ketidaksuburan adalah kondisi pasangan suami istri yang susah memiliki keturunan. Salah satu pemeriksaan kesuburan yang dianjurkan di bidang kesehatan adalah USG (Ultrasonografi). Untuk memeriksa kesuburan wanita dilakukan USG rahim dengan memeriksa keberadaan penyakit di rahim yang menyebabkan kemandulan, salah satunya adalah PCO (Polycystic Ovary), dengan melihat jumlah dan ukuran folikel dalam ovarium. Namun, sampai saat ini penentuan hasil USG rahim masih dilakukan secara manual oleh Dokter Spesialis Kandungan. Penelitian ini bermaksud untuk membantu ahli medis dalam mendiagnosa kesuburan wanita berdasarkan keberadaan PCO secara terkomputerisasi, sehingga hasil diagnosa dapat dilakukan dengan cepat dan akurat. Proses pendektesian diawali dengan pemrosesan awal pada citra USG dan ekstraksi ciri menggunakan Gabor Wavelet. Selanjutnya, pada tahap klasifikasi PCO digunakan metode Support Vector Machine (SVM). Kernel SVM yang digunakan sebagai classifier adalah fungsi kernel Linear, RBF, Kuadratik, dan Polinomial sesuai dengan kebutuhan persebaran data, dengan nilai parameter C kelipatan 10 dari rentang 0 hingga 300. Dengan menggunakan metode-metode tersebut, pencapaian akurasi tertinggi didapatkan dengan menggunakan parameter Gabor Wavelet dan SVM yang terbaik yaitu kernel polynomial, C=160, mask 17x17, frekuensi 2, 3, 4, 5 Hz dan sudut orientasi [π/6; π/6; π] dengan akurasi uji 78.4661% dan akurasi latih 75.5480% berdasarkan pengujian per-folikel.
Analisis dan Implementasi Metode Gabor Filter dan Support Vector Machine pada Klasifikasi Sidik Jari Intan Raharni Wijaya; Untari Novia Wisesty; Said Al Faraby
Indonesia Journal on Computing (Indo-JC) Vol. 2 No. 2 (2017): September, 2017
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2017.2.2.176

Abstract

Pengolahan citra digital semakin diminati, salah satunya pada sistem biometrik. Sistem biometrik merupakan sistem dalam pengenalan berdasarkan pola atau ciri khusus yang dimiliki makhluk hidup terutama manusia. Jenis identifikasi biometrik yang umum digunakan adalah pengenalan sidik jari. Sidik jari banyak digunakan dalam kehidupan sehari-hari selama lebih dari 100 tahun karena penerimaan yang tinggi, permanen, akurat, dan keunikan. Kelebihan sidik jari tersebut disebabkan oleh minutiae yang merupakan garis atau guratan pada sidik jari yang berbeda-beda setiap individu. Klasifikasi sidik jari secara umum terbagi menjadi dua tahap yakni ekstraksi fitur serta klasifikasi fitur.   Ektraksi fitur dapat dilakukan dengan cara filter seperti gabor filter dengan empat sudut orientasi yang berkisar 0, 45, 90 dan 135 derajat. Hasil dari ekstraksi ciri akan klasifikasi dengan tujutan identifikasi. Metode Support Vector Machine (SVM) dapat digunakan sebagai classifier untuk sistem biometrik sidik jari. SVM memiliki kernel trick yang berpengaruh pada akurasi yang dihasilkan. Digunakan SVM multiclass metode one-against-all dalam klasfikasi sidik jari untuk 25 kelas. Akurasi terbesar diperoleh oleh kernel Radial Basis Function (RBF) sebesar 73% untuk data awal dan 76% untuk penambahan data augmentasi
Levenberg-Marquardt Neural Network for Eye States Detection Based on Electroencephalography Data Untari Novia Wisesty
International Journal on Information and Communication Technology (IJoICT) Vol. 2 No. 1 (2016): June 2016
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/IJOICT.2016.21.72

Abstract

The eye state detection is one of various task toward Brain Computer Interface system. The eye state can be read in brain signals. In this paper use EEG Eye State dataset (Rosler, 2013) from UCI Machine Learning Repository Database. Dataset is consisting of continuous 14 EEG measurements in 117 seconds. The eye states were marked as “1” or “0”. “1” indicates the eye-closed and “0” the eye-open state. The proposed schemes use Multi Layer Neural Network with Levenberg Marquardt optimization learning algorithm, as classification method.  Levenberg Marquardt method used to optimize the learning algorithm of neural network, because the standard algorithm has a weak convergence rate. It is need many iterations to have minimum error. Based on the analysis towards the experiment on the EEG dataset, it can be concluded that the proposed scheme can be implemented to detect the Eye State. The best accuracy gained from combination variable sigmoid function, data normalization and number of neurons are 31 (95.71%) for one hidden layer, and 98.912% for two hidden layers with number of neurons are 39 and 47 neurons and linear function.
Deteksi Kanker berdasarkan Klasifikasi Data Microarray menggunakan Functional Link Neural Network dengan Seleksi Fitur Genetic Algorithm Putri Tsatsabila Ramadhani; Untari Novia Wisesty; Annisa Aditsania
Indonesia Journal on Computing (Indo-JC) Vol. 2 No. 2 (2017): September, 2017
Publisher : School of Computing, Telkom University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21108/INDOJC.2017.2.2.173

Abstract

Di beberapa tahun terakhir, pemanfaatan teknologi microarray memiliki pengaruh besar dalam menentukan gen informatif yang menyebabkan kanker. Micorarray mampu menentukan ekspresi ribuan gen dan secara simultan memantau proses bilogis yang sedang berlangsung. Dengan melakukan analisa terhadap data micorarray, selanjutnya ekspresi dari ribuan gen yang merepresentasikan suatu jaringan pada manusia, akan diklasifikasikan sebagai jaringan kanker atau bukan. Dalam penulisan penelitian penelitian, penulis meng-implementasikan Functional Link Neural Network dengan fungsi basis Legendre Polynomial untuk klasifikasi data yang akurat dan menggunakan Genetic Algorithm sebagai seleksi fitur untuk mereduksi data berdimensi tinggi yang sering ditemukan pada data microarray. Dengan serangkaian proses yang telah dilakukan, maka diperoleh kinerja tertinggi terhadap klasifikasi data microarray Colon Tumor sebesar 92.3% dan Leukemia sebesar 87.5%. Perbedaan kinerja yang diperoleh disebabkan oleh perbedaan karakteristik masing-masing data.
Klasifikasi Berita Bahasa Indonesia Menggunakan Mutual Information dan Support Vector Machine Lalu Gias Irham; Adiwijaya Adiwijaya; Untari Novia Wisesty
JURNAL MEDIA INFORMATIKA BUDIDARMA Vol 3, No 4 (2019): Oktober 2019
Publisher : STMIK Budi Darma

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.30865/mib.v3i4.1410

Abstract

News is a source of information disseminated in various types of media. In order to make it easier for news readers to obtain the desired news, the news needs to be classified. The large number of scattered news creates difficulties in classifying the news based on the topic. Therefore the author conducted a study to classify news into 12 classes (culture, economy, entertainment, law, health, life, automotive, education, politics, sports, technology, and tourism) automatically against 360 Indonesian news data. In this study several test scenarios were conducted to see the effect of stopword removal and stemming methods on data preprocessing, the effect of mutual information in selecting features, and performance of Support Vector Machine in classifying news data. The test results showed that the data using only stemming without stopword removal, using the MI selection feature and SVM classification method produced the best results of 94.24%, compared to the other methods.