Bilman Wilman Simanihuruk
University of Bengkulu

Published : 6 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : TERRA : Journal of Land Restoration

Growth and Yield of Soybean with Application of Liquid Organic Fertilizer and Arbuscular Mycorrhizal Fungi in Ultisols Lisa Septiani; RR Yudhy Harini Bertham; Hesti Pujiwati; Bilman Wilman Simanihuruk
TERRA : Journal of Land Restoration Vol 4, No 1 (2021)
Publisher : Department of Soil Science, Faculty of Agriculture, University of Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31186/terra.4.1.1-8

Abstract

Soybean (Glycine max (L.) Merill) is the third most important food crop after rice and corn which contains protein and other nutrients essential for the body. Ultisol soil is a less fertile soil that has many limitations on its physical, chemical, and biological properties. Efforts that can be made include the use of liquid organic fertilizer (LOF) and arbuscular mycorrhizal fungi (AMF). This research was conducted from February to May 2020, in Beringin Raya, Muara Bangka Hulu District, Bengkulu City with an altitude of + 10 m above sea level. The purpose of this study was to explain the growth and yield of soybeans due to the application of liquid organic fertilizers and arbuscular mycorrhizal fungi in Ultisols. The research design used was a randomized complete block design (RCBD) with 2 factors with three replications. The first factor is the LOF dose which consists of four levels, namely: 0, 20, 40, and 60 mL L-1. The second factor is the AMF dose with three levels, namely; 0, 5, and 10 g plant-1. The results showed that there was no interaction between LOF and AMF. Giving a LOF concentration of 60 mL L-1 gave the highest yield on the growth and yield of soybeans, as well as the optimum concentration for seed/plant weight, which was 28.114 mL L-1, and the number of seeds was 37.589 mL L-1. AMF dosage of 10 g plant-1 gave the best growth and yield of soybean plants. 
Effect of Humic Acid on Nutrient Availability and Yield of Upland Rice Inoculated with Biofertilizers in the Coastal Area Tika Indriani; Yudhy Harini Bertham; Hasanudin Hasanudin; Prasetyo Prasetyo; Bilman Wilman Simanihuruk
TERRA : Journal of Land Restoration Vol 5, No 1 (2022)
Publisher : Department of Soil Science, Faculty of Agriculture, University of Bengkulu

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.31186/terra.5.1.15-20

Abstract

This study aims to determine the effect of humic acid on nutrient availability and upland rice production in coastal land. The research was carried out in June - November 2020 in the Beringin Raya Village, Muara Bangkahulu District, Bengkulu City. This study used a completely randomized block design with 2 factors. The first factor was the local Bengkulu upland rice variety, namely the Red upland rice variety and the White upland rice variety, while the second factor was the type of fertilizer, namely control (basic fertilizer only), humic acid, and fertilizer recommended for upland rice from BPTP (200 kg Urea ha-1, 100 kg SP36 ha-1, 100 kg KCl ha-1). The results showed that the administration of humic acid in both the White and Red varieties resulted in the best KCl pH. And if you look at the yield per plot, the upland rice of the Red variety is better when given humic acid, which has an increase of 7.4% g/plot, while the White variety has better results when given the recommended inorganic fertilizer, which is an increase of 12% g/plot. The Red variety had a higher soil pH, but had a number of pithy grains per panicle, and a lower grain content percentage than the White variety. The application of humic acid resulted in better KCl, CEC, and N-total pH, but had plant height, number of pithy grains per panicle, and yields per plot that were almost the same as recommended inorganic fertilizers.