Retno Subekti
Jurusan Pendidikan Matematika, FMIPA Universitas Negeri Yogyakarta

Published : 2 Documents Claim Missing Document
Claim Missing Document
Check
Articles

Found 2 Documents
Search

APLIKASI REGRESI PARTIAL LEAST SQUARE UNTUK ANALISIS HUBUNGAN FAKTOR-FAKTOR YANG MEMPENGARUHI INDEKS PEMBANGUNAN MANUSIA DI KOTA YOGYAKARTA Masruroh, Marwah; Subekti, Retno
MEDIA STATISTIKA Vol 9, No 2 (2016): Media Statistika
Publisher : Department of Statistics, Faculty of Science and Mathematics, Universitas Diponegoro

Show Abstract | Download Original | Original Source | Check in Google Scholar | Full PDF (169.248 KB) | DOI: 10.14710/medstat.9.2.75-84

Abstract

Human Development Index is one of the indicators to measure the success of a region in the field of human development sector. There are several factors that affect Human Development Index, such as life expentancy, the literacy rate, the average length of the school, and the index of purchasing power. The aim in this paper is to analyze the relationship between factors that affect Human Development Index in Yogyakarta using regression analysis. One of the assumptions of classical regression is not going multicollinierity. Multicollinierity cause misinterpretation of regression coefficients with Ordinary Least Square (OLS) method. One method used to overcome multicollinierity is Partial Least Square (PLS). The result of Human Development Index data analysis showed there was a high correlation between the predictor variables or in other words going multicollinierity, so using PLS method, we obtained adjusted R2 of 99.3% Human Development Index variables can be explained by the four predictor variables. By using PLS method, multicollinierity resolved in the problem of violation in the linear regression assumption. Keywords: IPM, OLS, regression, PLS.
Analisis Data Multivariat Dengan Program R Wustqa, Dhoriva Urwatul; Listyani, Endang; Subekti, Retno; Kusumawati, Rosita; Susanti, Mathilda; Kismiantini, Kismiantini
Jurnal Pengabdian Masyarakat MIPA dan Pendidikan MIPA Vol 2, No 2 (2018): Vol 2, No 2 (2018)
Publisher : Yogyakarta State University

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.21831/jpmmp.v2i2.21913

Abstract

Analisis multivariat adalah salah satu teknik dalam statistika yang digunakan untuk menganalisis secara simultan variabel lebih dari satu. Perhitungan dalam analisis data multivariat lebih kompleks dibandingkan dengan analisis univariat, sehingga penggunaan program statistika akan mempermudah dalam analisis.  Salah satu program statistika yang dapat diperoleh secara gratis (tanpa lisensi) adalah program R. Workshop program R untuk analisis data multivariat bagi para lulusan S1 Pendidikan Matematika/Matematika dan mahasiswa program pasca sarjana Pendidikan Matematika secara umum bertujuan untuk memberikan pengetahuan dan ketrampilan dasar penggunaan program R pada analisis data multivariat. Metode yang digunakan dalam pelatihan meliputi tutorial dan praktek secara langsung. Sebagian peserta belum pernah menggunakan program R, dan terlihat bahwa mereka antusias dalam mengikuti pelatihan. Berdasarkan pengamatan dan tanya jawab dengan peserta pelatihan, tampak bahwa peserta bersemangat mengikuti kegiatan pelatihan. Dengan pelatihan ini para peserta mendapat pengetahuan secara teoritis tentang analisis komponen utama, analisis faktor dan secara praktek meliputi ketrampilan tentang bagaimana menganalisis data multivariat dengan program R, dan menginterpretasikan hasil analisis dengan kedua metode tersebut. Kata kunci: analisis multivariat, program statistika R. Multivariate Data Analysis Using R Program Abstract           Multivariate analysis is a technique in statistics that is used to simultaneously analyze more than one variable. Dealing with multivariate data analysis calculations are more complex than the univariate analysis, so the use of statistical program will make it easier. One of the free statistical programs (free license) is R program. Workshop R program on the multivariate data analysis for people who had mathematics or mathematics education degree or graduate students in general aims to provide multivariate data analysis skills using statistics R program. The training methods were tutorial and practices in class. Some participants had never used the R program prior to the training, and they were enthusiastic during training. According to the observations and questions and answers session, the participants appeared to have passions on learning the usage of  the statistical R program on analyzing multivariate data. From the training, the participants gained theoretical knowledge about the principal component analysis, factors analysis, and practices about the skills on how to analyze mulivariate data, and interpret the results of the analysis with both methods using the  R program. Keywords: multivariat analysis, R statistical program