Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Medika Trada

RANCANG BANGUN ROBOT LINE FOLLOWER PADA EXAMINATION LAMP BERBASIS MIKROKONTROLER ARDUINO Abdul Haris Kuspranoto; Muhammad Fa’iz Alfatih
MEDIKA TRADA : Jurnal Teknik Elektromedik Polbitrada Vol 4 No 1 (2023): MEDIKA TRADA (JTEMP) Vol 4 No 1 (2023)
Publisher : LPPM POLBITRADA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59485/jtemp.v4i1.25

Abstract

Penggunaan Examination lamp atau Lampu tindakan merupakan salah satu peralatan penunjang medis yang biasa digunakan untuk memberikan penerangan pada saat pemeriksaan (observasi) atau pemeriksaan tindakan kecil (minor surgery). Lampu tindakan yang ada saat ini masih menggunakan sumber tegangan dari jala jala PLN dan masih menggunakan switch untuk menghidupkan dan mematikan alatnya, serta untuk proses pengambilannyapun masih menggunakan sistem manual belum menggunakan sistem mobile secara otomatis. Oleh karena itu penulis membuat alat examination lamp mobile berbasis arduino uno dan komponen lain seperti sensor infrared TCRT 5000 dan sensor proximity type E18-D80NK. Tujuan dari penelitian ini adalah dapat membuat alat examination lamp mobile agar mempermudah pada saat pemeriksaan. Pada penelitian ini digunakan sensor infrared TCRT 5000 yang berfungsi untuk mendeteksi jalan atau garis pandu yang telah diberikan. Sensor TCRT 5000 pada alat ini digunakan sebagai media input pemrograman sistem line follower. Dimana line follower merupakan robot yang beroperasi secara otomatis bergerak mengikuti jalur garis yang telah dibuat. kemudian sensor proximity type E18-D80NK berfungsi sebagai pendeteksi objek, ketika sensor tersebut mendeteksi adanya objek maka LED akan menyala dan ketika sensor tersebut tidak mendeteksi adanya objek LED akan mati. Sedangkan modul RF 433MHz digunakan untuk mengatur gerak maju dan mundur alat dengan menggunakan modul tersebut alat tidak memerlukan pengkabelan untuk menjalankan sistemnya. Berdasarkan hasil pengujian alat menggunakan alat lux meter untuk mengetahui intensitas cahaya pada alat tersebut maka dilakukan pengukuran pada jarak 100 cm didapat nilai intensitas cahaya sebesar 8.460 lux, pada jarak 70 cm didapat nilai 9.310 lux.
DIGITAL E-DASHBOARD UNTUK RUANG STERILISASI: MENINGKATKAN SISTEM PEMANTAUAN DAN PENGENDALIAN KESEHATAN Abdul Haris Kuspranoto; Zulkhairi; Muhammad Fa’iz Alfatih
MEDIKA TRADA : Jurnal Teknik Elektromedik Polbitrada Vol 5 No 1 (2024): MEDIKA TRADA (JTEMP) Vol 5 No 1 (2024)
Publisher : LPPM POLBITRADA

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.59485/jtemp.v5i1.54

Abstract

Effective sterilization is crucial in healthcare settings to prevent healthcare-associated infections (HAIs) and ensure patient safety. Traditional methods of monitoring sterilization environments often involve manual checks and lack real-time data, leading to potential inefficiencies and risks. This paper presents the development and implementation of a Digital E Dashboard designed to enhance the monitoring and control of sterilization rooms. The system integrates an ESP32 microcontroller with various sensors to continuously monitor critical parameters such as temperature, humidity, and UV light intensity. The ESP32 microcontroller serves as the core component, collecting real-time sensor data and transmitting it to a cloud server for storage and further analysis. A web-based user interface provides an intuitive dashboard for healthcare staff, offering real-time visualization of sterilization conditions, historical data analysis, and customizable alert settings. Over an eight-week testing period, the system demonstrated high reliability and accuracy, maintaining optimal sterilization conditions and providing timely alerts for any deviations. Implementing the Digital E Dashboard resulted in significant improvements in workflow efficiency and sterilization process reliability. The system's ability to provide real-time data and automated alerts reduced the need for manual monitoring and allowed for prompt corrective actions, minimizing the risk of HAIs. The results, summarized in a detailed table, showed that the average temperature was consistently maintained within the optimal range of 60-80°C, humidity levels were kept between 30-50%, and UV light intensity was monitored effectively with minimal deviations. Feedback from healthcare staff indicated that the dashboard was user-friendly and significantly enhanced their ability to monitor and control the sterilization environment effectively. While the system proved successful, challenges such as sensor calibration, network connectivity, and user training were encountered. Future developments will focus on integrating additional sensors, enhancing network resilience, and incorporating advanced data analytics for predictive insights. The Digital E Dashboard represents a significant step forward in leveraging modern technology to improve sterilization practices in healthcare settings, ultimately contributing to better patient outcomes and safety.