Claim Missing Document
Check
Articles

Found 2 Documents
Search
Journal : Industrial and Domestic Waste Management

Medical Waste during COVID-19 Pandemic: Its Types, Abundance, Impacts and Implications Kuok Ho Daniel Tang
Industrial and Domestic Waste Management Vol. 2 Iss. 2 (2022)
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v2i2.117

Abstract

 COVID-19 has resulted in an abrupt and significant increase in medical waste, albeit with improving air and water quality in certain regions. This paper aims to review the types, abundance, and impacts of COVID-19-related medical waste through examining the contents of 54 peer-reviewed scholarly papers. COVID-19-related medical waste compositions vary over time, with COVID-19 screening, diagnostic, and treatment wastes, as well as used personal protective equipment (PPE), constituting the majority of medical waste at the start, followed by vaccination waste during the peak of vaccination. COVID-19-related medical waste is expected to decrease and steady as more and more countries relax restrictions in an attempt to live with COVID-19. Geographically, the amount of COVID-19-related medical waste depends on population size, with highly-populated countries and cities such as China, Manila, Jakarta, and Bangkok seeing or expected to see a hike in the waste of between 210 tonnes/day and 280 tonnes/day during COVID-19. Packaging of the medical and PPE items forming the medical waste stream also contributes to a substantial amount of waste. As plastics are a major component of medical waste, the increase in COVID-19-related medical waste and its mismanagement have worsened environmental pollution caused by plastics. The surge of medical waste during COVID-19 strained the existing medical waste disposal systems, and incineration of the waste contributed to air pollution, which was often localized. Mismanagement of the waste could also raise public health concerns and cause visual repercussions.
Phytoremediation of Microplastics: A Perspective on Its Practicality Kuok Ho Daniel Tang
Industrial and Domestic Waste Management Vol. 3 Iss. 2 (2022)
Publisher : Tecno Scientifica Publishing

Show Abstract | Download Original | Original Source | Check in Google Scholar | DOI: 10.53623/idwm.v3i2.291

Abstract

Microplastics have permeated all parts of the environment, rendering their removal essential. Numerous strategies ranging from the physical removal of mismanaged plastic items to the biodegradation of microplastics with microorganisms and biocatalysts have been proposed to alleviate microplastic pollution. Phytoremediation is one of the plastic-removing strategies, but it has not received much attention. This perspective paper aims to review the phytoremediation of microplastics and discuss its practicality. The paper shows that plants could act as interceptors and a temporary sink of microplastics by facilitating their deposition, adsorbing them, trapping them in the root zone, enabling them to cluster on the roots, taking them up, translocating them, and accumulating them in various plant parts. However, there was a lack of evidence pointing to the degradation of microplastics after they were adsorbed, taken up, and stored. Weak adsorption and environmental factors may cause the trapped microplastics to desorb, resuspend, or evade, thus also making plants a source of microplastics. The microplastics trapped and accumulated in plants may be transferred to the higher trophic levels of the food chain through ingestion and raise concerns over their ecotoxicities. Unlike localized pollution, microplastic pollution is widespread, which limits the applicability of phytoremediation. Besides, microplastics could adversely impact plant health and the ability of plants to remove other environmental pollutants. These drawbacks may reduce the attractiveness of phytoremediation unless it can be effectively combined with bioremediation to degrade microplastics.