IAES International Journal of Robotics and Automation (IJRA)
Vol 3, No 3: September 2014

Filtering Method for Location Estimation of an Underwater Robot

Nak Yong Ko (Dept. Electronics Eng. Chosun University, Korea)
Tae Gyun Kim (Chosun University)



Article Info

Publish Date
01 Sep 2014

Abstract

This paper describes an application of extended Kalman filter(EKF) for localization of an underwater robot. For the application, linearized model of robot motion and sensor measurement are derived. Like usual EKF, the method is recursion of two main steps: the time update(or prediction) and measurement update. The measurement update uses exteroceptive sensors such as four acoustic beacons and a pressure sensor. The four beacons provide four range data from these beacons to the robot and pressure sensor does the depth data of the robot. One of the major contributions of the paper is suggestion of two measurement update approaches. The first approach corrects the predicted states using the measurement data individually. The second one corrects the predicted state using the measurement data collectively. The simulation analysis shows that EKF outperforms least squares or odometry based dead-reckoning in the precision and robustness of the estimation. Also, EKF with collective measurement update brings out better accuracy than the EKF with individual measurement update.

Copyrights © 2014






Journal Info

Abbrev

IJRA

Publisher

Subject

Automotive Engineering Electrical & Electronics Engineering

Description

Robots are becoming part of people's everyday social lives and will increasingly become so. In future years, robots may become caretaker assistants for the elderly, or academic tutors for our children, or medical assistants, day care assistants, or psychological counselors. Robots may become our ...