Mechatronics, Electrical Power, and Vehicular Technology
Vol 5, No 2 (2014)

Design of Vibration Absorber using Spring and Rubber for Armored Vehicle 5.56 mm Caliber Rifle

Nugraha, Aditya Sukma (Unknown)
Budiwantoro, Bagus (Unknown)
Rijanto, Estiko (Unknown)



Article Info

Publish Date
04 Dec 2014

Abstract

This paper presents a design of vibration absorber using spring and rubber for 5.56 mm caliber rifle armored vehicle. Such a rifle is used in a Remote-Controlled Weapon System (RCWS) or a turret where it is fixed using a two degree of freedom pan-tilt mechanism. A half car lumped mass dynamic model of armored vehicles was derived. Numerical simulation was conducted using fourth order Runge Kutta method. Various types of vibration absorbers using spring and rubber with different configurations are installed in the elevation element. Vibration effects on horizontal direction, vertical direction and angular deviation of the elevation element was investigated. Three modes of fire were applied i.e. single fire, semi-automatic fire and automatic fire. From simulation results, it was concluded that the parallel configuration of damping rubber type 3, which has stiffness of 980,356.04 (N/m2) and damping coefficient of 107.37 (N.s/m), and Carbon steel spring whose stiffness coefficient is 5.547 x 106 (N/m2) provides the best vibration absorption. 

Copyrights © 2014






Journal Info

Abbrev

mev

Publisher

Subject

Electrical & Electronics Engineering

Description

Mechatronics, Electrical Power, and Vehicular Technology (hence MEV) is a journal aims to be a leading peer-reviewed platform and an authoritative source of information. We publish original research papers, review articles and case studies focused on mechatronics, electrical power, and vehicular ...