Bulletin of Chemical Reaction Engineering & Catalysis
2020: BCREC Volume 15 Issue 2 Year 2020 (August 2020)

Synergistic Effect of Microwave Calcination and Sonophotocatalytic Activity of TiO2-Montmorillonite on The Degradation of Direct Yellow 106 and Disperse Violet 1

Issma Labib (Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, B.P 270, Route de Soumaa, 09000 Blida)
Hocine Boutoumi (Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, B.P 270, Route de Soumaa, 09000 Blida)
Hussein Khalaf (Laboratoire de Génie Chimique (LGC), Faculté de Technologie, Université Blida 1, B.P 270, Route de Soumaa, 09000 Blida)



Article Info

Publish Date
01 Aug 2020

Abstract

The TiO2-pillared montmorillonite nanoparticles (TiO2-Mt) were prepared by the sol-gel method, then applied for the elimination of dyes in solution: CI Direct Yellow 106 (DY106) (azo dye) and CI Disperse Violet 1 (DV1) (anthraquinone dye) by the sonocatalytic, photocatalytic and sonophotocatalytic processes, in order to test the efficiency of photocatalysts, while photolysis, sonolysis, and sonophotolysis tests have been done previously. The photocatalysts (TiO2-Mt) were characterized by X-ray Diffraction (XRD), X-ray Fluorescence analysis (XRF), Brunauer-Emmet-Teller (BET), Scanning Electron Microscopy (SEM) methods, thermal and thermogravimetric analysis (TG/DTA) and the zero load point (pHpzc). Aqueous solutions of dye of an initial concentration (50 mg/L), in the presence of 1 g/L of photocatalyst, were irradiated using a mercury lamp (Hg) of 40 Mw/cm2 and put in contact with an ultrasonic probe with a frequency of 20 kHz and a power of 750 W, providing the ultrasound. The results obtained indicate that a weak, good and better dye degradation rate has been observed successively by the application of the sonocatalytic, photocatalytic and sonophotocatalytic processes, where the latter has shown a synergistic effect, while the photocatalyst TiO2-Mt/MW showed significant efficiency during the degradation, due to the beneficial effect of the microwave calcination mode. Copyright © 2020 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0). 

Copyrights © 2020






Journal Info

Abbrev

bcrec

Publisher

Subject

Chemical Engineering, Chemistry & Bioengineering Chemistry

Description

Bulletin of Chemical Reaction Engineering & Catalysis (e-ISSN: 1978-2993), an international journal, provides a forum for publishing the novel technologies related to the catalyst, catalysis, chemical reactor, kinetics studies, and chemical reaction ...